ISSN 1214-0287 (on-line), ISSN 1214-021X (printed)
J Appl Biomed
Volume 10 (2012), No 3, p 137-153
DOI 10.2478/v10136-012-0011-1

Application of microreactors in medicine and biomedicine

Anita Salic, Ana Tusek, Bruno Zelic

Address: Bruno Zelic, University of Zagreb, Faculty of Chemical Engineering and Technology, Marulicev trg 19, HR-10000 Zagreb, Croatia
bzelic@fkit.hr

Received 17th October 2011.
Revised 3rd January 2012.
Published online 31st January 2012.

Full text article (pdf)
Full text article (html)

SUMMARY
Microreactor technology is an interdisciplinary field that combines science and engineering. This new concept in production, analysis and research is finding increasing application in many different fields. Benefits of this new technology pose a vital influence on chemical industry, biotechnology, the pharmaceutical industry and medicine, life science, clinical and environmental diagnostic. In the last few years, together with microplant development, a great part of research investigation is focused on integrated micro-systems, the so called micro-total-analysis-systems (micro-TAS) or lab-on-chip (LOC). They are devices that perform sampling, sample preparation, detection and date processing in integrated model. Cell sorting, cell lysis, single cell analysis and non-destructive single cell experiments on just one microreactor, makes the LOC platform possible. Clinical diagnostic devices are also leaning towards completely integrated, multiple sophisticated biochemical analyses (PCR amplification, cell lysis, separation and detection) all on a single platform and in real time. Special attention is also paid to the usage of microdevices in tissue. Tissue engineering is one of the most promising fields that can lead to in vitro tissue and organ reconstruction ready for implantation and microdevices can be used to promote the migration, proliferation and the differentiation of cells in controlled situations.

KEY WORDS
microreactors; microfluidics; medicine; biomedicine; micro-total-analysis-system; lab-on-chip

REFERENCES
Adamo A, Jensen KF. Microfluidic based single cell microinjection. Lab Chip. 8: 1258-1261, 2008.
[CrossRef] [PubMed]

Adams JD, Kim U, Tom Soh H. Multitarget magnetic activated cell sorter. Proc Natl Acad Sci USA. 105: 18165-18170, 2008.
[CrossRef] [PubMed]

Bhatia SN, Chen CS. Tissue engineering at the micro-scale. Biomed Microdevices. 2: 131-144, 1999.
[CrossRef]

Berthier J, Van-Man Tran, Mittler F, Sarrut, N. The physical of coflow micro-extractor: Interface stability and optimal extraction length. Sens Actuators A-Phys. 149: 56-64, 2009.
[CrossRef]

Bossi A, Guizzardi L, D'Acunto MR, Righetti, PG. Controlled enzyme-immobilisation on capillaries for microreactors for peptide mapping. Anal Bioanal Chem. 378: 1722-1728, 2004.
[CrossRef] [PubMed]

Burns JR, Ramshaw C. The intensification of rapid reactions in multiphase systems using slug flow in capillaries. Lab Chip. 1: 10-15, 2001.
[CrossRef] [PubMed]

Carpentier JC. Process intensification by miniaturisation. Chem Eng Technol. 28: 255-258, 2005.
[CrossRef]

Cheng W, Klauke N, Sedgwick H, Smith GL, Cooper JM. Metabolic monitoring of the electrically stimulated single heart cell within a microfluidic platform. Lab Chip. 6: 1424-1431, 2006.
[CrossRef] [PubMed]

Chiu DT. A microfluidic platform for cell fusion-Commentary. Curr Opin Chem Biol. 5: 609-612, 2001.
[CrossRef]

Chován T, Guttman A. Microfabricated devices in a biotechnology and biochemical processing. Trends Biotechnol. 20: 116-122, 2002.
[CrossRef]

Condie R, Bose S, Bandyopadhyay A. Bone cell-materials interactions on Si microchannels with bioinert coatings. Acta Biomater. 3: 523-530, 2007.
[CrossRef] [PubMed]

Dessimoz A, Cavin L, Renken A, Kiwi-Minsker L. Liquid-liquid two-phase flow patterns and mass transfer characteristics in rectangular glass microreactors. Chem Eng Sci. 63: 4035-4044, 2008.
[CrossRef]

Dragavon J, Molter T, Young C, Strovas T, McQuaide S, Holl M, Zhang M, Cookson B, Jen A, Lidstrom M, Meldrum D, Burgess L. A cellular isolation system for real-time single-cell oxygen consumption monitoring. J R Soc Interface. 5(Suppl. 2): S151-159, 2008.
[CrossRef]

Ehrfeld W, Hessel V, Lowe H. Microreactors: new technology for modern chemistry. Wiley-VCH, Weinheim, 2005, pp. 1-69.

El-Ali J, Gaudet S, Günther A, Sorger PK, Jensen KF. Cell stimulus and lysis in a microfluidic device with segmented gas-liquid flow. Anal Chem. 77: 3629-3636, 2005.
[CrossRef] [PubMed]

Fertig N, Blick RH, Behrends JC. Whole cell patch clamp recording performed on a planar glass chip. Biophys J. 82: 3056-3062, 2002.
[CrossRef]

Fletcher PD, Haswell SJ, Pombo-Villar E, Warrington BH, Watts P, Wong SYF, Zhang X. Micro reactors: principles and applications in organic synthesis. Tetrahedron. 58: 4735-4757, 2002.
[CrossRef]

Gerey K, Codee JDC, Seeberger PH. Microreactors as tools for synthetic chemists - The Chemists' round-bottomed flask of the 21st century? Chem Eur J. 12: 8434-8442, 2006.
[CrossRef] [PubMed]

Gomez FA (ed.). Biological applications of microfluidics. Wiley-VCH, Weinheim, 2000, pp. 291-404.

Guenat OT, Generelli S, de Rooji NF, Koudelka-Hep M, Berthiaume F, Yarmush ML. Development of an array of ion-selective microelectrodes aimed for the monitoring of extracellular ionic activities. Anal Chem. 78: 7453-7460, 2006.
[CrossRef] [PubMed]

Hernandez Carucci JR, Eranen K, Murzin DYu, Salmi TO. Experimental and modelling aspects in microstructured reactors applied to environmental catalysis. Catal Today. 147: 149-155, 2009.
[CrossRef]

Hoang HT, Sagers-Nolten IM, Bereschot JW, de Boer MJ, Tas NR, Haneveld J, Elwenspoek MC. Fabrication and interfacing of nanochannel devices for single-molecule studies. J Micromech Microeng. 19: 1-11, 2009.
[CrossRef]

Huang M, Fan S, Xing W, Liu C. Microfluidic cell culture system studies and computational fluid dynamics. Math Comput Model. 52: 2036-2042, 2010.
[CrossRef]

Huang Y, Rubinsky B. Microfabricated electroporation chip for single cell membrane permeabilization. Sens Actuators A-Phys. 89: 242-249, 2001.
[CrossRef]

Ionescu-Zanetti C, Shaw RM, Seo J, Jan LY, Lee L.P. Mammalian electrophysiology on a microfluidic platform. Process Natl Acad Sci USA. 102: 9112-9117, 2005.
[CrossRef] [PubMed]

Kang L, Chung BG, Langer R, Khademhosseini A. Microfluidics for drug discovery and development: From target selection to product lifecycle management. Drug Discover Today. 13: 1-13, 2008.
[CrossRef] [PubMed]

Kashid MN. Experimental and modelling studies on liquid-liquid slug flow capillary microreactors, PhD Thesis, Dortmund, 2007.

Kashid MN, Agar DW. Hydrodynamics of liquid-liquid slug flow capillary microreactor: flow regimes, slug size and pressure drop. Chem Eng J. 131: 1-13, 2007.
[CrossRef]

Kovac JR, Voldman J. Intuitive, image-based cell sorting using optofluidic cell sorting. Anal Chem. 79: 9321-9330, 2007.
[CrossRef] [PubMed]

Kraly JR, Holcomb RE, Guan Q, Henry CS. Review: Microfluidic applications in metabolomics and metabolic profiling. Anal Chim Acta. 653: 23-35, 2009.
[CrossRef] [PubMed]

Krommenhoek EE, Gardeniers JGE, Bomer JG, Li X, Ottens M, van Dedem GWK, van Leeuwen M, van Gulik WM, van der Wielen A, Heijnen JJ, van der Berg A. Integrated electrochemical sensor array for the online monitoring of yeast fermentation. Anal Chem. 79: 5567-5573, 2007.
[CrossRef] [PubMed]

Kurosawa O, Oana H, Matsuoka S, Noma A, Kotera H, Washizu M. Electroporation through a micro-fabricated orifice and its application to the measurement of cell response to the external stimulus. Meas Sci Technol. 17: 3127-3133, 2006.
[CrossRef]

Lawi W, Wiita C, Snyder ST, Wei F, Wong D, Wong PK, Liao JC, Haake D, Gau V. A microfluidic cartridge system for multiplexed clinical analysis. J Assoc Lab Autom. 14: 407-412, 2009.
[CrossRef] [PubMed]

Le Gac S, van der Berg A. Single cells as experimentation units in lab-on-a-chip devices. Trends Biotechnol. 28: 55-62, 2009.
[CrossRef] [PubMed]

Leclerc E, Corlu A, Griscom L, Baudoin R, Legallais C. Guidance of liver and kidney organotypic cultures inside rectangular silicone microchannels. Biomaterials. 27: 4109-4119, 2006.
[CrossRef] [PubMed]

Lidke DS, Nagy P, Heintzmann R, Arndt-Jovin D, Post JN, Grecco HE, Jares-Erijman EA, Jovi TM. Quantum dot ligand provides new insight into erbB/HER receptor-mediated signal transduction. Nat Biotechnol. 22: 198-203, 2004.
[CrossRef] [PubMed]

Lin CC, Wang CJH, Wu HW, Lee GB. Microfluidic immunoassays. Tech Rev. 15: 253-274, 2010.

Liu BF, Xu BX, Zhang G, Du W, Luo Q. Micro-separation toward system biology. J Chromatogr A. 1106: 19-28, 2006.
[CrossRef] [PubMed]

Loughran M, Cretich M, Chiari M, Suzuki H. Separation of DNA in a versatile microchip. Sens Actuators B-Chem. 107: 975-979, 2005.
[CrossRef]

Lowe H, Hessel V, Mueller A. Microreactors. Prospects already achieved and possible misuse. Pure Appl Chem. 74: 2271-2276, 2002.
[CrossRef]

Maguire TJ, Novik E, Chao P, Barminko J, Nahminas Y, Yarmush M, Cheng KC. Design and application of microfluidic systems for in vitro pharmacokinetic evaluation of drug candidates. Curr Drug Metab. 10: 1-8, 2009.
[CrossRef] [PubMed]

Marimuthu M, Kim S. Microfluidic cell coculture methods for understanding cell biology, analyzing bio/pharmaceuticals and developing tissue constructs. Anal Biochem. 413: 81-89, 2011.
[CrossRef] [PubMed]

McCreedy T. Fabrication techniques and materials commonly used for the production of microreactors and micro total analytical systems. Trend Anal Chem. 19: 396-401, 2000.
[CrossRef]

Miyazaki M, Maeda H. Microchannel enzyme reactors and their applications for processing. Trend Biotechnol. 24: 463-470, 2006.
[CrossRef] [PubMed]

Northrup MA, Ching MT, White RM, Lawton RT. DNA amplification with a microfabricated reaction chamber. International Conference of Solid-state Sensors and Actuators (Transducers 93), Yokohama, Japan, June 7-10, pp. 924-926, 1993.

Ozkan M, Pisanic T, Scheel J, Barlow C, Esener S, Bhatia SN. Electro-optical platform for the manipulation of live cells. Langmuir. 19: 1532-1538, 2003.
[CrossRef]

Piggee C. Optical tweezers: not just for physicists anymore. Anal Chem. 81: 16-19, 2009.
[CrossRef]

Poe SL, Cummings MA, Haaf MP, McQuade DT. Solving the clogging problem: precipitate-forming reactions in flow. Angew Chem Ed. 45: 1544-1548, 2006.
[CrossRef]

Pohar A, Plazl I. Process intensification through microreactor application. Chem Biochem Eng Q. 23: 537-544, 2009.

Pribyl M, Snita D, Hasal P, Marek M. Modeling of electric-field driven transport processes in microdevices for immunoassay. Chem Eng J. 101: 303-314, 2004.
[CrossRef]

Rebrov EV, Duinkerke SA, de Croon MHJM, Schouten JC. Optimization of heat transfer characteristics, flow distribution, and reaction processing for a microstructured reactor/heat-exchanger for optimal performance in platinum catalyzed ammonia oxidation. Chem Eng J. 93: 201-216, 2003.
[CrossRef]

Rivet C, Lee H, Hirsch A, Hamilton S, Lu H. Microfluidics for medical diagnostics and biosensors. Chem Eng Sci. 66: 1490-1507, 2011.
[CrossRef]

Rivron NC, Rouwkema J, Truckenmuller R, Karperien M, De Boer J, Van Blitterswijk CA. Tissue assembly and organization: developmental mechanisms in microfabrication tissue. Biomaterials. 30: 4851-4858, 2009.
[CrossRef] [PubMed]

Roberge DM, Durcy L, Bieler N, Cretton P, Zimmermann B. Microreactor technology: A revolution for the fine chemical and pharmaceutical industries? Chem Eng Technol. 25: 318-322, 2005.
[CrossRef]

Sanders GHW, Manz A. Chip-based microsystems for genomic and proteomic analysis. Trend Anal Chem. 19: 364-378, 2000.
[CrossRef]

Santini JT, Jr., Richards AC, Scheidt R, Cima MJ, Langer R. Microchips as controlled drug-delivery devices. Angw Chem Int Ed. 39: 2396-2407, 2000.

Schenk R, Hessel V, Hofmann C, Kiss J, Lowe H, Ziogas A. Numbering - up of microdevices: a first liquid-flow split unit. Chem Eng J. 101: 421-429, 2004.
[CrossRef]

Skelley AM, Kirak O, Suh H, Jaenisch R, Voldman J. Microfluidic control of cell pairing and fusion. Nat Methods. 6: 147-152, 2009.
[CrossRef] [PubMed]

Slyadnev MN, Lavrova MV, Erkin MA, Kazako VA, Geneev AA. Development of a multireactor microfluidic system for the determination of DNA using real time polymerase chain reaction. J Anal Chem. 63: 192-198, 2008.
[CrossRef]

Sobieszuk P, Cyganski P, Pohorecki R. Bubble lengths in the gas-liquid Taylor flow in microchannels. Chem Eng Res Des. 88: 263-269, 2010.
[CrossRef]

Sun Y, Liu Y, Qu W, Jiang X. Combining nanosurface chemistry and microfluidics for molecular analysis and cell biology. Anal Chim Acta. 650: 98-105, 2009.
[CrossRef]

Taff BM, Voldman J. A scalable addressable positive dielectrophoretic cell-sorting array. Anal Chem. 77: 7976-7983, 2005.
[CrossRef] [PubMed]

Tanaka Y, Sato K, Yamato M, Okano T, Kitamori T. Cell culture and life support system for microbioreactor and bioassay. J Chromatogr A. 1111: 233-237, 2006.
[CrossRef] [PubMed]

Tas NR, Berenschot JW, Lammerink TSJ, Elwenspoek M, van der Berg A. Nanofluidic bubble pump using surface tension directed gas injection. Anal Chem. 74: 2224-2227, 2002.
[CrossRef] [PubMed]

Thery M, Bornens M. Cell shape and cell division. Curr Opin Cell Biol. 18: 648-657, 2006.
[CrossRef] [PubMed]

Tresset G, Takeuchi S. A microfluidic device for electrofusion of biological vesicles. Biomed Microdevices. 6: 213-218, 2004.
[CrossRef] [PubMed]

Urban PL, Goodall DM, Bruce NC. Enzymatic microreactors in chemical analysis and kinetic studies. Biotechnol Adv. 24: 42-57, 2006.
[CrossRef] [PubMed]

Valero A, Post JN, van Nieuwkasteele JW, Ter Braak PM, Kruijer W, van der Berg A. Gene transfer and protein dynamics in stem cells using single cells electroporation in a microfluidic device. Lab Chip. 8: 62-67, 2008.
[CrossRef] [PubMed]

Vecchio G, Sabella S, Tagliaferro L, Menegazzi P, Di Bello MP, Brunetti V, Cingolani R, Rinaldi R, Pompa PP. Modular plastic chio for one-shot human papillomavirus diagnostic analysis. Anal Biochem. 397: 53-59, 2010.
[CrossRef] [PubMed]

Waconge B, Pieralli, C, Roux C, Gharbi T. Measuring the mechanical behaviour of human oocytes with a very simple SU-8 micro-tool. Biomed Microdevices. 10: 411-419, 2008.
[CrossRef] [PubMed]

Walker GM, Zeringue HC, Beebe DJ. Microenvironment design considerations for cellular scale studies. Lab Chip. 4: 91-97, 2004.
[CrossRef] [PubMed]

Wang YM, Tegenfeldt JO, Reisner W, Riehn R, Guan XJ, Guo L, Golding I, Cox EC, Sturm J Austin RH. Single-molecule studies of repressor-DNA interactions show long-range interactions Proc Natl Acad Sci USA. 102: 9796-9801, 2005.
[CrossRef] [PubMed]

Watts P, Haswell SJ. Continuous flow reactors for drug discovery. Drug Discov Today. 8: 586-593, 2003.
[CrossRef]

Westermann T. Flow-trough membrane microreactor for intensified heterogeneous catalysis. PhD. Technisches Hochshule Aachen, 2009.

Wlodkowic D, Cooper JM. Tumours on chips: oncology meets microfluidics. Curr Opin Chem Biol. 14: 556-567, 2010.
[CrossRef] [PubMed]

Xiang Q, Hu G, Gao Y, Li D. Miniaturized immunoassay microfluidic system with electrokinetic control. Biosens Bioelectron. 21: 2006-2009, 2006.
[CrossRef] [PubMed]

Yi C, Li C-W, Ji S, Yang M. Microfluidics technology for manipulation and analysis of biological cells. Anal Chim Acta. 560: 1-23, 2006.
[CrossRef]

Zguris JC, Itle LJ, Hayes D, Pishko MV. Microreactor microfluidic systems with human microsomes and hepatocytes for use in metabolite studies. Biomed Microdevices. 7: 117-125, 2005.
[CrossRef] [PubMed]

Zhang C, Jinliang X, Ma W, Zheng W. PCR microfluidic devices for DNA amplification. Biotechnol Adv. 24: 234-284, 2006.
[CrossRef] [PubMed]

Zhang Y, Ozdemir P. Microfluidic DNA amplification. Anal Chim Acta. 638: 115-125, 2009.
[CrossRef] [PubMed]
CITED

0


BACK