ISSN 1214-0287 (on-line), ISSN 1214-021X (printed)
J Appl Biomed
Volume 9 (2011) No 3, p 119-127
DOI 10.2478/v10136-011-0010-7

The nucleolus through the years

Karel Smetana

Address: Karel Smetana, Institute of Hematology and Blood Transfusion, U nemocnice 1, Prague 2, 128 20 Czech Republic
karel.smetana@uhkt.cz

Received 1st June 2011.
Published online 8th June 2011.

Full text article (pdf)
Full text article (html)

SUMMARY
At present it is clear that nucleoli are multifunctional cell organelles and participate in the cell proliferation, resting state, differentiation, maturation, aging and death. Therefore, they also represent very useful morphological markers of these cell states under physiological, pathological and experimental conditions. One of important nucleolar functions related to the mentioned cell states represents the transcription of ribosomal RNA and assembly of pre-ribosomal particles. Thus nucleoli participate in the creation of the cytoplasmic translation machinery necessary for the cell life and function. Although main nucleolar functions are already known, some of recently reported new additional functions depend on the role of a variety of nucleolar proteins some of which are not participating in the ribosomal biogenesis. It is natural that the role of newly discovered nucleolar proteins is still under discussions and remains to be clarified depending on new methodical approaches. It should be also mentioned that the visualization of some of these proteins and nucleolar localization also are and will be a subject for further studies.

KEY WORDS
nucleoli; morphological marker; visualization; ribosomal biogenesis; nucleolar DNA; RNAs; proteins; pathology

REFERENCES
Bernhard W, Granboulan N. The fine structure of the cancer cell nucleus. Exp Cell Res. 9 (Suppl. 1): 19-53, 1963.
[CrossRef]

Biggiogera M, Bottone MG, Scovassi AI, Soldani C, Vecchio L, Pellicciari C. Rearrangement of nuclear ribonucleoprotein (RNP)-containing structures during apoptosis and transcriptional arrest. Biol Cell. 96: 603-615, 2004.
[CrossRef]

Boulon S, Westman BJ, Hutten S, Boisvert FM, Lamond A. The nucleolus under stress. Mol Cell. 40: 216-277, 2010.
[CrossRef]

Brachet J. La localization des acides pentose nucleiques dans les tissues animals et les oeufs d’amphibiens en voie de developpement. Arch Biol (Liege). 53: 207-257, 1942.

Busch H. Nucleolar and nucleolonemal proteins of cancer cells. J Tumor Marker Oncol. 12: 5-68, 1997.

Busch H, Smetana K. The Nucleolus. Acad. Press, New York 1970.

Cada Z, Boucek J, Dvorankova B, Chovanec M, Plzak J, Kodet R, Betha J, Pinot GL, Gabius HJ, Smetana K, Jr. Nucleostemin expression in squamous cell carcinoma of the head and neck. Anticancer Res. 27: 3279-3284, 2007.

Caspersson TO. Cell Growth and Cell Function. A Cytochemical Study. Norton, New York 1950.

Chan PK, Chan FY. A study of correlation between NPM-translocation and apoptosis in cells induced by Daunomycin. Biochem Pharmacol. 57: 1265-1273, 1999.
[CrossRef]

Derenzini M, Trere O. Silver-stained nucleolar organizer regions (AgNOR). Pathologica. 93: 99-105, 2001.

Dundr M, Raska I. Nonisotopic ultrastructural mapping of transcription sites within the nucleolus. Exp Cell Res. 208: 275-281, 1993.
[CrossRef]

Fakan S, Puvion E. The ultrastructural visualization of nucleolar and extranucleolar RNA synthesis and distribution. Int Rev Cytol. 65: 258-299, 1980.
[CrossRef]

Franke WW, Scheer U, Trendelenburg ME, Spring H, Zentgraf H. Absence of nucleosomes in transcriptionally active chromatin. Cytobiologie. 13: 401-434, 1976.

Haaf T, Hayman DL, Schmid M. Quantitative determination of rDNA transcription units in vertebrate cells. Exp Cell Res. 193: 78-86, 1991.
[CrossRef]

Hozak P, Zatsepina O, Vasilyeva I, Chentsov Y. An electron microscopic study of nucleolus - organizing regions at some sages of the cell cycle (G0 period, G2 period, mitosis). Biol Cell. 57: 197-206, 1986.

Hozak P, Cook PR, Schofer C, Mosgoller W, Wachtler F. Site of transcription of ribosomal RNA and intranucleolar structure in HeLa cells. J Cell Sci. 107: 633-648, 1994.

Jordan EG. Interpreting nucleolar structure: where are the transcribing genes? J Cell Sci. 98: 437-442, 1991.

Jorgensen M. Zellenstudien. Arch Zellforsch. 10: 1-203, 1913.

Koller PC. The nucleolus of the cancer cell: a historical review. Exp Cell Res. 9 (Suppl. 1): 3-14, 1963.
[CrossRef]

Lischwe MA, Smetana K, Olson MO, Busch H. Proteins B23 and C23 are the major nucleolar silver staining proteins. Life Sci. 25: 701-708, 1979.
[CrossRef]

Medina FJ, Gonzalez-Camacho F, Manzano AI, Manrique A, Herranz R. Nucleolin, a major conserved multifunctional nucleolar phosphoprotein of proliferating cells. J Appl Biomed. 8: 141-150, 2010.
[JAB][CrossRef]

Miller OL, Beatty BR. Visualization of nucleolar genes. Science. 164: 955-957, 1969.
[CrossRef]

Montgomery TH. Comparative cytological studies with especial regard to the morphology of the nucleolus. J Morphol. 15: 265-563, 1899.
[CrossRef]

Nagl W. Zellkern und Zellzyklen. Verl E Ulmer, Stuttgart 1976.

Ochs RL. Methods to study structure and function of the nucleolus. Methods Cell Biol. 53: 303-321, 1998.
[CrossRef]

Ochs RL, Smetana K. Fibrillar center distribution in nucleoli of PHA stimulated human lymphocytes. Exp Cell Res. 184: 552-557, 1989.
[CrossRef]

Ochs RL, Stein TW, Eng MT. Coiled bodies in the nucleolus of breast cancer cells. J Cell Sci. 107: 385-399, 1994.

Olson MOJ, Dundr M, Szebeni A. The nucleolus: an old factory with unexpected capabilities. Trends Cell Biol. 10: 198-202, 2000.
[CrossRef]

Pederson T. The plurifunctional nucleolus. Nucleic Acids Res. 26: 3871-3876, 1998.
[CrossRef]

Pederson T. Proteomics of the nucleolus: more proteins, more functions? Trends Biochem Sci. 27: 111-112. 2002.
[CrossRef]

Pederson T. "Compact" nucleolar domains: reconsidering the nucleolus. Nucleus. 1: 444-445, 2010.

Pederson T, Tsai RYL. In search of nonribosomal nucleolar protein function and regulation. J Cell Biol. 184: 721-778, 2009.
[CrossRef]

Raska I. Searching for active ribosomal genes. In Jeanteur P (ed.): Trafficking and Nuclear Structure Dynamics. Progress in Molecular and Subcellular Biology. Springer, Berlin 2003, pp. 23-56.

Raska I, Ochs RL, Salamin-Michel LS. Immunocytochemistry of the cell nucleus. Electron Microsc Rev. 3: 301-353, 1990.
[CrossRef]

Ro-Choi TS. Nucleolar sno RNA and ribosome production. Mol Cells. 7: 451-467, 1997.

Ruzicka V. Zur Geschichte und Kenntnis der Feineren Struktur der Nucleolen Centraler Nervenzellen. Anat Anz. 16: 557-563, 1899.

Scheer U, Hock R. Structure and function of the nucleolus. Curr Opin Cell Biol. 11: 385-390, 1999.
[CrossRef]

Scherl A, Coute Y, Deon C, Calle A, Kinbeiter K, Sanches JC, Greco A, Hochstrasser D, Diaz JJ. Functional proteomic analysis of human nucleolus. Mol Biol Cell. 13: 4100-4109, 2002.
[CrossRef]

Schleiden M. Beitrage zur Phytogenesis. Arch Anat Physiol Wiss Med. 137-176, 1838.

Schnedl W, Schnedl M. Nukleoluszahl und -grosse wahrend der Zellzyklus. Z Zellforsch. 126: 374-382, 1972.
[CrossRef]

Schwann T. Mikroskopische Untersuchungen uber die Ubereinstimmun in der Struktur und dem Wachstum der Tiere und Pflanzen. Sander, Berlin 1839.

Schwarzacher HG, Wachtler F. Nucleolus organizer regions and nucleoli. Hum Genet. 63: 89-99, 1983.
[CrossRef]

Sirri V, Russel P, Hernandez-Verdun D. The AgNOR proteins: qualitative and quantitative changes during the cell cycle. Micron. 31: 121-126, 2000.
[CrossRef]

Smetana K. Structural features of nucleoli in blood, leukemic, lymphoma and myeloma cells. Eur J Histochem. 46: 125-132, 2002.

Smetana K. To the nucleolar structure and cytochemistry (Nucleoli as useful markers of various cell states). Recent Res Devel Life Sci. 1: 253-263, 2003.

Smetana K. Nucleoli in blood cells of hematologic malignancies (structure, cytochemistry of nucleoli in leukemic, lymphoma and myeloma cells. In Romero RM (ed.): Trends in Leukemia Research. Nova Science Publishers, Hauppage, New York 2005, pp. 153-179.

Smetana K, Busch H. The nucleolus and nucleolar DNA. In Busch H (ed.): The Nucleus 1. Academic Press, New York 1974.

Smetana K, Lejnar J, Potmesil M. A further contribution to the demonstration of RNA and nucleoli of blood cells in smear preparations. Folia Haematol. 91: 381-394, 1969.

Smetana K, Jiraskova I, Sedlackova M, Dvorak R, Spatova M, Hozak P. Preferential silver reaction of nucleolar regions adjacent to fibrillar centers in ring shaped nucleoli of leukemic lymphocytes. Acta Histochem. 100: 257-270, 1998.

Smetana, K, Grebenova D, Jiraskova I, Doubek M, Marinov Y, Hrkal Z. A note of the decreased number and loss of fibrillar centers in nucleoli of apoptotic HL-60 leukaemic granulocytic precursors produced by 5-aminolaevulinic acid-based photodynamic treatment. Folia Biol (Praha). 50: 15-20, 2004.

Smetana K, Pluskalova M, Jiraskova I, Hrkal Z. A morphological and cytochemical note to the reversible intranucleolar translocation of AgNORs (silver stained nucleolus organizer regions) in early leukemic granulocytic progenitors represented by cultured K 562 cells. J Appl Biomed. 3: 193-198, 2005.
[CrossRef]

Smetana K, Klamova H, Mikulenkova D, Pluskalova M, Hrkal Z. On the nucleolar size and density in human early granulocytic progenitors, myeloblasts. Eur J Histochem. 50: 119-124, 2006a.

Smetana K, Klamova H, Pluskalova M, Stockbauer P, Hrkal Z. To the intranucleolar translocation of AgNORs in leukemic early granulocytic and plasmacytic precursors. Histochem Cell Biol. 125: 165-170, 2006b.
[CrossRef]

Smetana K, Zapotocky M, Starkova J, Trka J. To the nucleolar density and size in apoptotic human leukemic myeloblasts produced in vitro by Trichostatin A. Eur J Histochem. 52: 143-148, 2008.

Smetana K, Jiraskova I, Mikulenkova D, Klamova H. The translocation of AgNORs in large nucleoli of early granulocyte progenitors in patients suffering from chronic phase of chronic myeloid leukemia. J Appl Biomed. 7: 111-114, 2009.
[JAB]

Spector DL. Macromolecular domains within the cell nucleus. Ann Rev Cell Biol. 9: 265-315, 1993.
[CrossRef]

Stanek D, Kiss T, Raska I. Pre-ribosomal RNA is processed in permeabilised cells at the sie of transcription. Eur J Cell Biol. 79: 202-207, 2000.
[CrossRef]

Staub E, Fiziev P, Rozenthal A, Hinzmann B. Insights into the evolution of the nucleolus by an analysis of its protein domain. Bioassays. 26: 576-581, 2004.
[CrossRef]

Stockinger L. Das Kernkorperchen. Protoplasma. 42: 365-412, 1953.
[CrossRef]

Tsuchiya M, Katagiri N, Kuroda T, Kishimoto H, Nishimura K, Kumazawa T, Iwasaki N, Kimura K, Yanagisawa J. Critical role of the nucleolus in activation of the p53-dependent postmitotic checkpoint. Biochem Biophys Res Commun. 407: 378-382, 2011.
[CrossRef]

Unuma T, Smetana K, Busch H. A morphologic study on the chromatin areas associated with the nucleolus. Exp Cell Res. 48: 665-671, 1967.
[CrossRef]

Valentin GG. Repertorium Anatomie und Physiologie, Berlin 1836.

Vendrely C, Vendrely R. Localisation de l’acide ribonucleique dans les differents tissues et organs de vertebras. In Graumann W, Neumann K (eds.): Handbuch der Histochemie 2. Fischer, Jena 1959, pp. 84-283.

Wachtler F, Stahl A. The nucleolus: a structural and functional interpretation. Micron. 24: 473-505, 1993.
[CrossRef]

Ye K. Nucleophosmin/B23, a multifunctional protein that can regulate apoptosis. Cancer Biol Ther. 4: 918-923, 2005.
[CrossRef]
CITED

Hubacek T, Siegel J, Khalili R, Slepickova-Kasalkova N, Svorcik V. Carbon coatings on polymers and their biocompatibility. Appl Surf Sci. 275: 43-48, 2013.

BACK