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Summary
Estrogen replacement therapy (ERT) engenders much debate since several studies contradict its efficacy as
a palliative therapy for cognitive decline and neurodegenerative diseases. Signaling transduction pathways
alter brain cell activity, survival, and morphology by facilitating transcription factor activation and protein
production. The steroidal hormone estrogen and the anti-depressant drug lithium can interact also through
these signaling transduction pathways resulting in transcription factor activation. The transcription factor
cAMP response element binding protein (CREB) is affected by both estrogen and lithium, and CREB
regulates genes involved in learning, memory and neuronal survival. CREB is activated upon phosphorylation
at serine 133 by protein kinases and, estrogen and its receptors (ER) facilitate this phosphorylation. Glycogen
synthase kinase-3beta (GSK-3β) attenuates CREB’s transcriptional properties via subsequent phosphorylation
of its serine 129, and lithium is known as a negative regulator of GSK-3β, thus facilitating CREB response
element binding. Interestingly, ERα function and DNA-binding properties are facilitated by GSK-3β. In this
review we include protein modeling depicting the interaction of CREB/GSK-3β and ERα/GSK-3β using
I-TASSER and PatchDock web servers. Understanding the molecular pathways of estrogen will assist in
identifying a palliative therapy for menopause-related dementia, and lithium may serve this purpose by acting
as a selective estrogen-mediated signaling modulator.
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INTRODUCTION

Estrogen and lithium exert neuroprotective properties
and may act as palliative treatments for
neurodegeneration and cognitive decline (Manji et al.
1999, Goodenough et al. 2003). Alzheimer’s disease
(AD) in post-menopausal women is related to
estrogen deficiency, and estrogen replacement
therapy (ERT) may benefit post-menopausal women
in reducing the risk of developing AD (Garcia-Segura
et al. 2001). Other studies, however, contradict these
findings and suggest that hormone therapy does not
improve cognitive decline during menopause,
specifically episodic memory (Henderson 2009).
There is a high risk of developing breast cancer,
marked by increased incidences of lobular carcinoma,
in post-menopausal women undergoing ERT
(Newcomer et al. 2003). Furthermore, women
suffering from depression during peri- and
post-menopause are often prescribed lithium
(Kukopulos et al. 1985, Burt and Rasgon 2004). Few
studies focus on how estrogen and lithium may
augment or counteract neuroprotective qualities these
two agents possess, and studies demonstrating
estrogen and lithium’s affect on learning and memory
are conflicting. Many underlying mechanisms still
remain to be studied and ever increasing
proteonomic- and genomic-generated data suggest
these as complex mechanisms.

Using I-TASSER (Threading/ASSEmbly/
Refinement) web server (Wu et al. 2007, Zhang 2007,
2008) we fabricated 3-D protein models represented
in Figs 1–6. Due to limited parent structures in the
protein data bank (PDB), some models presented in
this review display low complexity regions (e.g.
indicated primarily by the lighter colored region in
the background of Fig. 1; subsequent figures are not
highlighted as such, though). To choose the best
model for this review, predicted models by
I-TASSER were compared to superimposed
crystallography structures from the PDB, aided by the
structure based sequences alignment program
(STRAP) and Pymol for visualizing the
superimposition (see table 1 for accession number
used to compare each predicted models). We used
TransMembrane prediction using Hidden Markov
Models (TMHMM) web server to locate and specify
transmembrane domains by representing a predicted
hydrophobicity chart. Literature mining and using the
BLAST conserved domain web server (NCBI)
assisted in locating specific amino acids specifying
binding residues to produce the hypothetical
protein-protein interactions in this review. Figures
depicting these protein-protein interactions were

provided by the PatchDock web server (Duhovny et
al. 2002, Schneidman-Duhovny et al. 2005).

Fig. 1. CREB. Phosphorylating CREB at its serine 133
(green) causes a conformational change in its leucine zipper
region (cyan) causing CREB to dimerize with CREB
binding protein. This dimerization facilitates CREB
response element binding. The conformational change that
occurs, however, exposes CREB’s serine 129 region (red)
allowing a subsequent phosphorylation attenuating CREB’s
response element binding. (The yellow depicts the kinase
inducible domain of CREB. The light colored region
indicates the low complexity region).

NEUROSTEROIDS AND ESTROGEN
REPLACEMENT THERAPY

Menopause is marked by a massive drop in
circulating estrogen. The growing concern with
estrogen deficiency is the increase incidence of
neurodegenerative diseases and cognitive decline.
Circulating estrogen permeates the blood-brain barrier
(Lee and McEwen 2001), and some speculate
α-fetoprotein, a fetal plasma protein with a high
affinity for estrogen, facilitates estrogen
neuromechanisms (McEwen et al. 1975 , Bakker and
Baum 2008). Estrogen is primarily produced by the
gonads and the adrenal gland, but hormones, known
as neurosteroids, are also produced in the brain
(Sierra 2004). Production of steroids by the gonads
requires steroidogenic acute regulatory protein
(StAR) to facilitate intermembrane passage of
cholesterol, and StAR is ubiquitously expressed in the
brain, but at low levels (Sierra 2004). Women with a
mutation in the StAR gene suffer from hormone
deficiency leading to spontaneous puberty and an
early onset of menopause (Bhangoo et al. 2007).
Cholesterol is transported by StAR to the inner
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Table 1. Specific amino acid sequences used to fabricate 3-D protein models. These predicted models were superimposed
with crystallography structures from PDB to justify predicted structures.

Predicted Protein NCBI Accession # Comparison Protein PDB Accession #

CREB NP_604391.1 CREB Leucine Zipper 1dh3

GSK-3β NP_002084.2 GSK-3β 1q4l

ERα NP_000116.2 ERα 1l2i

GPR30 NP_001091671.1 Rhodopsin 2J4Y

mitochondrial membrane where cytochrome P450
converts cholesterol into pregnenolone, the steroidal
precursor (Sierra 2004). Astrocytes are a source for
steroidogenesis and glia-mediated steroidal
production is linked to neuronal synaptic formation
and to facilitating synaptic transmission (Hu et al.
2007). Interestingly, StAR is expressed in glia and
this co-localization is linked to glia-mediated
steroidogenesis (Sierra 2004). Little is known about
how ERT affects StAR or how ERT affects the
production of neurosteroids. Should research be
directed towards replacing estrogen in
post-menopausal women, or geared towards
e n h a n c i n g  n e u r o s t e r o i d o g e n e s i s  a n d
estrogen-mediated brain cell signaling pathways?

The benefits of ERT are a controversial topic. As
mentioned, women undergoing ERT increase their
risk of breast cancer (Newcomer et al. 2003), but
there also lies a dichotomy with ERT in relation to
enhancing cognitive function and reducing
neurodegenerative diseases. For instance, in 1994
Henderson (Henderson et al. 1994) concluded that
ERT may reduce the risk of AD and cognitive decline
during post-menopause, but in 2009 Henderson is
skeptical of ERT neuroprotective and neuroenhancing
properties. There is also a debate about a critical
window hypothesis. The hypothesis states that if ERT
is initiated at a younger age, prior to menopause, it
will reduce the risk of AD (Sherwin 2003); but
Henderson considers these studies systematically bias
(Henderson 2009). Selective estrogen receptor
modulators (SERMs) do provide an alternative to
ERT, and studies show a decrease in breast cancer
incidence and a slowing in the progression of
osteoporosis (Jordan et al. 2001). But SERMS use
does not seem to improve cognitive functioning
(Natale et al. 2004, Palmer et al. 2008). If SERMs do
not influence cognitive functioning, an alternative
treatment should be investigated since estrogen does
affect several brain cell signaling pathways involved
in learning, memory and neuroprotection.

LEARNING, MEMORY AND
NEUROPROTECTION VIA
ESTROGEN/ESTROGEN
RECEPTOR-MEDIATED PATHWAYS

Estrogen facilitates brain cell signaling pathways that
enhance synaptic plasticity (Leranth et al. 2002),
reduce glutamate excitotoxicity (Honda et al. 2001),
increase neuroprotection of adult hippocampal cells
(Liu et al. 2001), regulate neurotrophic factors (Solum
and Handa 2002), and facilitate transcription factor
activation (McEwen 2001). Learning and memory are
products of gene regulation, and transcription factors.
For example, cAMP response element binding protein
(CREB) regulates genes responsible for critical brain
functions, including synaptic plasticity, learning,
memory and neuroprotection (Pugazhenthi et al.
2000, Walton and Dragunow 2000, Honda et al. 2001,
Kandel 2001). CREB activation is facilitated by
estrogen (McEwen 2001) leading to the transcription
of immediate early genes (e.g. c-fos and c-jun), which
in turn promotes phenotypical changes – e.g. synaptic
plasticity (Sanyal et al. 2002). In fear conditioning
experiments mice exhibit an upregulation of
immediate early genes in the hippocampus and this
upregulation is mediated by the amygdala (Huff et al.
2006). Mice with targeted mutations of CREB exhibit
deficiencies in long-term memory storage, but not
short-term memory storage (Bourtchuladze et al.
1994). Activation of CREB’s signaling pathway is
initiated by adenylyl cyclase which catalyzes ATP
into cAMP that then activates cAMP dependent
protein kinase (PKA). PKA then phosphorylates
CREB at its serine133 site (Fig. 1) (Bullock and
Habener 1998). Estrogen and its receptors (ER)
facilitate non-genomic molecular pathways by
increasing CREB activity (McEwen 2001) and
estrogen is known to increase cAMP levels by
binding to G-protein coupled receptors (GPCR) that
stimulate adenylyl cyclase activity (Filardo et al.
2002).
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Fig. 2. GSK-3β. The darker magenta areas depict the
protein kinase domains of GSK-3β. These regions possess
ATP binding, catalytic, activation and substrate binding
domains.

Fig. 3. Protein-protein interaction of CREB and
GSK-3β. Subsequent phosphorylation of CREB (cyan) at
serine 129 (red) attenuates response element binding,
thereby reducing cAMP-dependent transcription.
Subsequent phosphorylation is mediated by GSK-3β
(magenta) and interaction is noted at lysine 205 (wheat) of
GSK-3β.

Glycogen synthase kinase-3beta (GSK-3β; Fig. 2)
is a negative regulator of CREB via subsequent
phosphorylation of CREB at serine 129 (Fig. 3) and
this subsequent phosphorylation can only occur after
the initial phosphorylation of serine 133 (Bullock and
Habener 1998, Grimes and Jope 2001a). The serine
129 phosphorylation attenuates CREB transcriptional
properties thus inhibiting CREB’s neuroprotective

mechanisms (Bullock and Habener 1998, Grimes and
Jope 2001a). Classically, GSK-3β is well known for
its inhibition of the transcription factor β-catenin in
the Wnt signaling pathway (Grimes and Jope 2001b).
β-catenin is necessary for activating genes responsible
in general for embryonic development and more
specifically, for central nervous system development
(Grimes and Jope 2001b). When bound by its ligand
estrogen, ERα causes an ephemeral inhibition of
GSK-3β via phosphorylation of its serine residues
(Cardona-Gomez et al. 2004). ERs also act as
ligand-activated transcription factors for the promoter
region estrogen response element (ERE) (Macgregor
and Jordan 1998, Garcia-Segura et al. 2001). 

To date, there are two known ERs: ERα and ERβ
(Shughrue et al. 1997). In the nervous system, ERs are
mainly located in the hypothalamus and amygdala
(two areas responsible for the gonadal distribution of
hormones), but they are also located in regions of the
cerebral cortex (Merchenthaler et al. 2004) and
hippocampus (Shughrue et al. 1997, Garcia-Segura et
al. 2001). ERs are expressed in pyramidal cells of the
hippocampus and Solum and Handa (2002) measured
brain derived neurotrophic factor (BDNF) mRNA
expression in gonadectomized rats and found that
BDNF mRNA decreased in the hippocampus of these
gonadectomized rats, but was reversed with a single
injection of estrogen. This group also found that ERα
is co-localized with BDNF in pyramidal cells of the
hippocampus (Solum and Handa 2002), suggesting
that ERs may play a role in memory and cognition
(Shughrue et al. 1997, Fugger et al. 2000, McEwen
2001). By increasing the activation of second
messenger signaling, such as calcium and cAMP that
activate protein kinases (Gu et al. 1996), which in turn
activate CREB, estrogen indirectly increases CREB
activation (McEwen 2001). Wu et al. (2005) proposed
that estrogen/ER complex leads to neuroprotection by
recruiting phosphatidylinositol-3 kinase (PI3K). The
recruitment of PI3K by ERs increases intracellular
calcium; calcium acts as a second messenger involved
in several cell signaling pathways. One specific
downstream target of calcium is protein kinase C
(PKC) which activates Src protein (Wu et al. 2005).
Src, a tyrosine kinase then activates extracellular
signal-regulated kinase (ERK) signaling leading to the
transcription of B-cell lymphoma/leukeimia-2 (Bcl-2),
via phosphorylated CREB (Wu et al. 2005). PI3K also
facilitates Bcl-2 anti-apoptotic activity by activating
Akt (also known as protein kinase B) which inhibits
attenuating factors of Bcl-2 (Wu et al. 2005).
Promotion of intracellular calcium levels via
ER-mediated signaling is debatable since evidence
shows a rapid increase in intracellular calcium is
mediated by estrogen binding to GPR30, a serpentine
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transmembrane GPCR (Belcher 2008, Prossnitz and
Maggiolini 2009). Human keratinocytes treated with
estrogen increase phosphorylated CREB levels and
GPR30 anti-sense oligonucleotides attenuate this
increase (Kanda and Watanabe 2004). The difference
in calcium influx mediated by ERs or GPR30 may be
that ERα has a binding affinity for a Src recruiter
known as proline-, glutamic acid-, and leucine-rich
protein-1 (PELP1) (Brann et al. 2008). The
recruitment of PELP1 binds Src and may lead to the
PI3K/ERK/CREB pathway proposed by Wu et al.
(2005).

The dominant form of estrogen, 17β-estradiol
(E2), has an affinity for ERα (Fig. 4) leading to
transcription factor activation, but E2 can mediate
protein signaling pathways through ERs and
non-ERs. As mentioned, PELP1 is a co-regulator of
ERα and this interaction leads to Akt/PI3K signaling
pathways (Brann et al. 2008) – a pathway facilitated
by lithium involving GSK-3β inhibition (De Sarno et
al. 2002). But E2 also binds to the G-protein coupled
receptor (GPCR), GPR30 – a serpentine receptor.
GPR30 expression takes place in the plasma
membrane but it is also expressed in the endoplasmic
reticulum (Raz et al. 2008). GPCRs are members of
the rhodopsin family and they possess seven
transmembrane α-helices; GPR30 shares these
conserved domains (Fig. 5A). Ligand binding by E2
activates GPR30 (Fig. 5B) and this binding facilitates
cAMP production (Raz et al. 2008). Fig. 5B depicts
ligand binding by E2 at the outer and inner
membrane – these are hypothetical binding sites using
PatchDock web server.

Response element binding of ERα relies on
GSK-3β phosphorylation and this phosphorylation is
inhibited in the presence of lithium. Medunjanin et al.
(2005) suggested that when GSK-3β is
phosphorylated at serine 9 it disassociates itself from
ERα, allowing ERα to migrate to the nucleus for a
subsequent phosphorylation by GSK-β –
consequently activating ERα transcriptional
properties (Fig. 6). Palindromic DNA sequences are
recognized by ERα, and expressed in promoter
regions for NMDA receptor subunits (Watanabe et al.
1999); thus, estrogen has a direct genomic role in
NMDA receptor subunit expression.

LITHIUM

To elucidate lithium’s prophylactic properties for
bipolar disorder, investigators postulated mechanisms
involving inositol depletion (Harwood 2004) and
GSK-3β inhibition (Gould and Manji 2002). Inositol

Fig. 4. ERα. This figure depicts ERα bound by E2 (blue) at
arginine 394 within the ligand binding domain (foreground;
orange). The ligand binding domain also contains the
co-activator recognition site and dimer interface. Domains
are conserved in ERα classifying it as part of the ER family
(background; light orange) and as a transcription factor due
to its zinc finger domain (cyan).

depletion hypothesis states that lithium inhibits
inositol monophosphatase thus depleting the amount
of free inositol (Harwood 2004). Inositol signaling
ultimately releases calcium stored in the endoplasmic
reticulum affecting several signaling pathways.
Inositol signaling via glutamate receptor increases
protein kinase activity, transcription factor activation
(O’Riordan et al. 2006) and is highly involved in
synaptic plasticity (Fernandez de Sevilla et al. 2008).
Using Dictyostelium and human neutrophil cell line
(HL60), King et al. (2009) systematically investigated
the hypothesis that lithium suppresses
inositol-mediated signaling. This group showed that
lithium reduces phosphoinositide and this reduction is
reversed by over expressing inositol monophosphatase
(King et al. 2009). Two inositol monophosphatases
have been identified (IMPA1 and IMPA2) and IMPA2
is highly associated not only with bipolar disorder, but
schizophrenia as well (Yoshikawa et al. 2001). A high
concentration of magnesium and a high pH are
required for IMPA2 compared with IMPA1 (Ohnishi
et al. 2007). Ohnishi et al. (2007) showed that lithium
also inhibits IMPA2 and this inhibition hinders
magnesium concentrations. Bipolar patients treated
with lithium show a decrease in inositol
monophosphatase activity in red blood cells compared
with non-treated bipolar patients (Kofman and
Belmaker 1993), but cerebrospinal fluid from
lithium-treated patients suffering from bipolar illness
or schizophrenia show an increase in inositol
monophosphatase activity (Atack et al. 1998).
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Fig. 5A–5B. GPR30. This superimposition depicts GPR30
(green) sharing similar structure to rhodopsin (red) (A).
GPR30 express seven α-helices transmembrane domains
(green) and putative binding of E2 (blue) is shown on the
outer membrane (cyan) at phenylalanine 298 and glutamine
54, and inner membrane (cyan) at arginine 248 (B).

Fig. 6. Protein-protein interaction of ER- and GSK-3β.
Once bound by estrogen (blue), ERα (orange) mediates cell
signaling pathways or acts as a transcription factor.
Response element binding of ERα is facilitated by GSK-3β
(magenta) phosphorylation. This figure depicts binding of
ERα at serine 104 (green) by lysine 205 (wheat) of GSK-3β.
The non-bound residues in green (ERα) and wheat
(GSK-3β) are the binding sites described by Medunjanin et
al. (2005) and Ilouz et al. (2006), respectively. The GSK-3β
amino acid residue responsible for phosphorylating ERα
depicted in this figure is the same residue that
phosphorylates CREB at serine 129 (Fig. 3).

For over a decade, and within the last year, studies
have shown that lithium specifically inhibits GSK-3β
(Klein and Melton 1996, Engel et al. 2008) and this
inhibition is associated with reducing apoptotic
activity (Hongisto et al. 2003), enhancing
neurotrophic factors (Angelucci et al. 2003), and
facilitating CREB DNA binding (Ozaki and Chuang
1997, Grimes and Jope 2001a). Interestingly, learning
and memory centers of the brain are influenced by
lithium, since lithium increases performance in
hippocampal-dependent spatial memory tasks
(Sharifzadeh et al. 2007). An extensive study using
GSK-3β heterozygous knockout mice analyzed
b e h a v i o r a l  p a r a m e t e r s  r a n g i n g  f r o m
apomorphine-induced stereotypic behavior to startle
response and found no distinct differences in behavior
(Bersudsky et al. 2008). This may lead one to
postulate that lithium may affect learning and memory
through GSK-3β independent pathways.

Though the mechanism remains elusive, GSK-3β
inhibition by lithium is described as acting through
both direct and indirect mechanisms. Indirectly,
lithium inhibits GSK-3β by activating protein kinases
that phosphorylate GSK-3β at its inhibitory serine
9 residue or by inactivating phosphatases that remove
the serine 9 phosphate group (Jope 2003). Enzymatic
activity is highly dependent on magnesium and
lithium directly inhibits GSK-3β by acting as a
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competitive inhibitor of magnesium; magnesium
being a cofactor for ATP in GSK-3β activation
(Fig. 4) (Ryves and Harwood 2001). Thus, GSK-3β
inhibition by lithium protects/rescues the brain from
apoptotic cell death; and neural dysfunction results
from the failure to completely inhibit GSK-3β
(Grimes and Jope 2001a). In addition, lithium-treated
rats show an upregulation of Bcl-2 in layers II and III
of the frontal cortex, dentate gyrus and striatum
(Manji et al. 1999). Therefore, long-term
administration of lithium could provide
neuroprotection by increasing neuronal survival.
Neuroprotective qualities of lithium are also
associated with increasing BDNF expression and
facilitating BDNF signaling via tyrosine kinase
receptor. Rat cortical neurons treated with lithium or
BDNF had similar neuroprotective qualities;
however, lithium required a chronic treatment
(6 days) as opposed to an acute action by BDNF
(1 day) (Hashimoto et al. 2002). These
neuroprotective qualities are attenuated by BDNF
neutralizing antibodies and specific inhibitors for
tyrosine kinase (Hashimoto et al. 2002). The
BDNF/tyrosine kinase receptor signaling also
activates PI3K/Akt signaling pathways, ultimately
leading to neuronal survival and increasing Bcl-2
expression (Patapoutian and Reichardt 2001).
Neuroprotection of cerebellar granule neurons by
lithium via tyrosine kinase activity is also
documented, since this neuroprotection is abolished
with tyrosine kinase inhibitors (Grignon et al. 1996).

Phencyclidine (PCP), also known as angel dust, is
an NMDA receptor antagonist and its actions result in
schizophrenic-like behavior (Choi et al. 2009);
clinically, lithium is also prescribed for schizophrenia
(Citrome 2009). PCP inhibits PI3K/Akt and ERK
signaling pathways, and PCP activates GSK-3β by
facilitating the dephosphorylation of its serine
9 residue, however, lithium reverses PI3K/Akt and
ERK inhibition and GSK-3β activation (Xia et al.
2008). Lithium indirectly affects NMDA receptor
signaling pathway by reducing phosphorylation and
activation of Src-tyrosine kinase activity.
Furthermore, phosphorylation of NR2 subunits of
NMDA receptor by Src tyrosine kinases is essential
for the receptor’s signal transduction activity and
Hashimoto et al. (2003) demonstrate that
phosphorylated levels of Src tyrosine kinase decrease
in a time-dependent fashion when treated with
lithium. Although NMDA receptor is highly involved
in learning and memory it also mediates glutamate
excitotoxicity, and this mediation reduces
phosphorylated CREB levels (Kopnisky et al. 2003).
Diminished phosphorylated CREB is regulated by
protein phosphatase 1 (Kopnisky et al. 2003), a factor

involved in GSK-3β activation (Zhang et al. 2003).
When Kopnisky et al. (2003) chronically treated
neuronal cultures with lithium, protein phosphatase
1 activity decreased, and phosphorylated CREB levels
increased; lithium also increased ERK signaling
pathway. Post-synaptic glutamate receptors, like
NMDA receptors, facilitate synaptic connectivity and
conductivity, and lithium enhances this facilitation.
Interestingly, enhanced synaptic plasticity is
correlated with phosphoinositide depletion and not
GSK-3β inhibition (Kim and Thayer 2009). Lithium is
double-edged in interacting with glutamate receptors,
but only to balance the properties of glutamate
receptor signaling pathways. This suggests that
lithium attenuates glutamate receptor-mediated
excitoxicity (Hashimoto et al. 2002), but also
facilitates, maintains and strengthens glutamate
receptor-mediated synaptic connectivity and
communication (Kim and Thayer 2009). If lithium is
a competitive inhibitor of magnesium (Ryves and
Harwood 2001) and glutamate receptor channels bind
magnesium (Clarke and Johnson 2008), could lithium
then directly affect glutamate receptor? Would
lithium’s direct interaction lead to glutamate receptor
inhibition or facilitate its activity, or both? 

ESTROGEN AND LITHIUM; OR, LITHIUM
AS A SELECTIVE ESTROGEN-MEDIATED
SIGNALING MODULATOR

To date, few studies focus on the neurobiological
affects of combined estrogen and lithium. Several
studies employ lithium in taste aversion tasks and in
inducing seizures. Seizures are induced by injecting
lithium in specific stereotactic brain regions to induce
status epilepticus (e.g. seizures). Estrogen protects rat
hippocampus from these induced seizures; however,
this protection is gender specific (Galanopoulou et al.
2003). Lithium permeates cells through
sodium-potassium ATPase pumps and this permeation
is dependent on sodium-lithium counterflow and
exchange (Pandey et al. 1978), which increases
cytoplasmic pH levels thus altering cell activity
(Kobayashi et al. 2000). Sodium-lithium counterflow
is increased by long-term use of oral contraceptives
(Adebayo et al. 1998); interestingly, lithium does not
alter ERα expression in murine uterine tissue, but
ovariectomized mice treated with combined estrogen
and lithium show reduced uterine ERα expression
(Gunin et al. 2004).

Taste aversion tasks use lithium to cause an
adverse reaction to a rewarding stimulus (e.g. sucrose
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water) and studies show that estrogen hinders
ovariectomized rats ability to detect dilute sucrose
solutions (Curtis et al. 2005). Estrogen accelerates
extinction of conditioned taste aversion behavior, but
this is dependent on when estrogen is administered
(e.g. before or during extinction) (Yuan and
Chambers 1999). Combined lithium and estrogen
decrease inflammation of stomach lining, but
individual treatment does not affect gastric erosions
(Abouzeit-Har et al. 1982). Both estrogen and lithium
affect enkephalins, a regulator of nociceptic responses
(e.g. noxious stimuli). In analyzing rat anterior
pituitary, Yoshikawa and Hong (1983), found that
enkephalin expression is sex dependent – males
express higher levels than females. Administering
estrogen to male rats decreases enkephalins, but
testosterone increases enkephalins in female rat
anterior pituitary (Yoshikawa and Hong 1983). Rats
were also administered lithium and Yoshikawa and
Hong (1983) noted a decrease in enkephalins of the
anterior pituitary for both male and female rats. This
led them to conclude that the enkephalin system is
mediated by the dopamine pathway (Yoshikawa and
Hong 1983). Parkinson disease and clinical disorders,
such as bipolar disorder, are highly associated with
the dopamine pathway, a pathway affected by
estrogen and lithium combined (Silverstone 1985,
Morissette et al. 2008).

An increase in intracellular sodium concentration
mediated by dopaminergic pathways is a
characteristic of bipolar disorder and lithium
normalizes this increase (Roberts et al. 2009). Studies
show that combined estrogen and lithium alter
serotonin and dopamine metabolites. Estrogen does
not change serotonin levels, dopamine or dopamine
metabolites in the frontal cortex of ovariectomized
rats, but when estrogen is combined with lithium,
dopamine drastically decreases (Morissette and Di
Paolo 1996). This decrease is associated with higher
serotonin levels and dopamine metabolites
(Morissette and Di Paolo 1996). Apomorphine is a
d o p a mi n e r g i c  a g o n i s t  t h a t  i n c r e a s e s
stereotyped-behavior (e.g. Parkinsonian symptoms) as
noted in ovariectomized rats after discontinuing
chronic treatment of estrogen; but this increase in
stereotyped-behavior is diminished with lithium
(Dorce and Palermo-Neto 1992).

Lithium does not affect basal levels of cAMP, but
when stimulated by dopamine, lithium inhibits
adenylyl cyclase activity and this effect has been
observed in vitro and in vivo (Montezinho et al.
2007). Lithium’s inhibition of dopamine-stimulated
adenylyl cyclase is not through GPCR signaling
pathway, as indicated using the dopamine receptor
agonist, quinpirole (Montezinho et al. 2007);

interestingly, GTP hydrolysis is decreased by lithium,
but not when stimulated by catecholamines (i.e.
dopamine and epinephrine) (Odagaki et al. 1997).
There instead seems to be a direct inhibition of
adenylyl cyclase by lithium but only when adenylyl
cyclase is activated (Mann et al. 2008). Studies show
that lithium hinders hormone and dopamine-stimulated
adenylyl cyclase activity in rat cerebral cortex, with
the conclusion that lithium is causing this hindrance
via competitive inhibition (e.g. magnesium) (Newman
and Belmaker 1987). Will lithium inhibit
GPR30-stimulated adenylyl cyclase activity?

There is a correlation between adenylyl cyclase
activity and progression of AD. Post-mortem
hippocampi of AD patients showed a decrease in
adenylyl cyclase activity due to a hindrance in the
catalytic domain (Ohm et al. 1991). Progression of
AD is associated with producing excessive amounts of
the insoluble form of amyloid beta protein – a
proteolytic product of amyloid precursor protein
(APP) cleaved by β-secretase (Glenner 1982).
Cleavage of APP by alpha secretase can produce a
soluble product rendering it benign. Estrogen does
increase alpha secretase cleavage and lithium mimics
this increase – potentially through GSK-3β inhibition
(Goodenough et al. 2003). Post-mortem AD brains
also show a decrease in NMDA receptor subunit
mRNA for NR1 and NR2B in the hippocampal
formation with advancement of the disease
(Mishizen-Eberz et al. 2004). Our laboratory has
shown that a 48 h treatment of combined estrogen and
lithium reduces gene expression of NR1, a critical
subunit of NMDA receptors and increases glutamate
excitotoxicity in primary cultures of mouse
hippocampal and cortical cells predominated by glia
(Valdés and Weeks 2009).

Estrogen facilitates calcium influx and promotes
factors involved in neuronal survival and synaptic
plasticity (Sarkar et al. 2008). Neurodegenerative
diseases, like AD, are marked by increased
excitotoxicity, due to high intracellular calcium levels
in brain cells (Dong et al. 2009), and postmenopausal
women suffer from AD (Henderson 2009). Should
women with a higher likelihood of progressive
neurodegenerative functions be prescribed ERT? Or
should postmenopausal therapy be directed towards
modulating estrogen brain cell signaling pathways?
Lithium is extremely toxic if serum levels exceed the
therapeutic range (0.6–1.4 mM) as shown by treating
rats for up to 28 days and this study also showed that
lithium increases estrogen levels via antagonizing ERs
(Allagui et al. 2006). Recent studies, however,
indicate that lithium facilitates proliferation of
epithelial cells and these cells show increased ER
expression (Polotsky et al. 2009); lithium also
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facilitates increases in estrogen production (Choe et
al. 2003). Although lithium is classically used to treat
bipolar syndrome it has an incredible propensity for
stabilizing molecular mechanisms. Jope (1999)
proposed a bimodal model for lithium, since lithium
regulates positive and negative cell signaling
mechanisms resulting in raising basal activities and
reducing maximal activities or by increasing basal
levels and reducing maximal levels of cell signaling
mechanisms (Jope 1999). Lithium’s bimodal
mechanism may facilitate ER-mediated brain cell
signaling during post-menopause by increasing the
activity level in a system deprived of its basal level of
estrogen.

CLOSING REMARKS

Previous literature stress the risk of ERT due to
incidences of endometrial and lobular carcinoma and
that patients under ERT should be monitored for these
adverse effects (Weiss 1975, Newcomer et al. 2003).
Gambrell (1982) acknowledges the benefits of ERT
that include reducing vasomotor symptoms,
urogenital atrophy, psychosomatic complaints,
osteoporosis, cardiovascular disease, lipid
metabolism, and that these benefits can be maximized
if risks of ERT are closely monitored (i.e. endometrial
cancer, endometrial hyperplasia, breast cancer,
coagulation factors, and gallbladder disease). Ten
years later, Gambrell (1992) stresses the point that
adequate dosage and inclusion of progestogen
(progestin) will increase ERT benefits than with
estrogen alone. However, as aforementioned,
Henderson (2009) debates ERT benefits.

The benefits mentioned by Gambrell contribute to
the reasons why ERT is so widely used to treat
post-menopausal women, as opposed to other forms
of treatment. Lithium treatment also warrants caution
since lithium toxicity result in adverse symptoms if
dosage and treatment length are not closely
monitored. Detailed accounts of lithium’s adverse
effects are described by Grandjean and Aubry (2009).
As this clinical update mentions, the common
complaints of long-term lithium usage are
gastrointestinal pain, diarrhea, tremor, polyuria,
nocturnal urination, weight gain, edema, and
exacerbation of psoriasis (Grandjean and Aubry
2009). This clinical update extensively describes less
common adverse affects such as hypothyroidism,
thyrotoxicosis, hyperparathyroidism, hypercalcaemia,
and hypermagnesaemia. Lithium may also contribute
to adverse neurological effects such as postural

Fig. 7. A post-synaptic cell signaling schematic of the
mechanism described in this review. ATP, adenosine
triphosphate; CREB, cyclic adenosine monophosphate
(cAMP) response element binding protein; ER, estrogen
receptor; GPR30, G-protein coupled receptor 30; GSK-3β,
glycogen synthase-3beta; NMDAR, N-methyl-D-aspartate;
PKA, cAMP dependent protein kinase
(          putative interaction,      !  activating/interacting, 

}  inhibitory).

tremors and extrapyramidal symptoms, and cognitive
impairments in memory, vigilance, reaction time and
tracking (Grandjean and Aubry 2009). Lithium may
affect fetal development via the GSK-3β catenin
pathway (Kao and Elinson 1998) and lithium
treatment should not be used during the first trimester
of pregnancy (Grandjean and Aubry 2009). The most
common adverse effect of lithium is nephrogenic
diabetes insipidus, characterized by excess thirst and
overly diluted urine (Grünfeld and Rossier 2009).
Recent studies infer that the root cause of diabetes
insipidus is lithium targeting principal cells of the
collecting duct resulting in downregulation of
aquaporin 2, a cell membrane protein that regulates
renal water flow (Grünfeld and Rossier 2009).

Although there are adverse effects for both
estrogen and lithium usage, post-menopausal therapy
should be directed towards enhancing
estrogen-mediated neuromechanisms instead of
supplementing the system with estrogen (or hormones
in general). SERMs do provide an alternative to ERT,
and, although advancement of neurodegenerative
diseases are attenuated (Dhandapani and Brann 2002),
SERMs do not improve cognitive functioning (Natale
et al. 2004, Palmer et al. 2008). Over 60 years ago
John Frederick Joseph Cade, an Australian
psychiatrist, first recognized the calming effects of
lithium on small animals and on himself (Cade 1949).
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Since then lithium has been used to treat bipolar
disorder and over a decade has passed since
molecular mechanisms for lithium began to be
recognized (Klein and Melton 1996). These molecular
implications have expanded lithium’s profile as a
cognitive enhancer and an anti-neurodegenerative
agent (Manji et al. 1999). As discussed in this review,
both estrogen and lithium facilitate a plethora of
signaling transduction pathways resulting in
anti-apoptosis, protein expression, learning and
memory. Fig. 7 depicts pathways discussed in this
review, shows the multitude of pathways affected by
estrogen and suggests ways in which lithium interacts
with these signaling transduction pathways. We
believe to further study the involvement of
antidepressants and hormones will provide a better
treatment regime for post-menopausal women.
Perhaps a palliative therapy could consist of a
combination of estrogens and lithium, maximizing the
benefits of both agents – but clearly further
investigations are needed to procure a proper
treatment regime.
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