Modulation of antioxidant enzymes activities and lipid peroxidation products in diet-induced hypercholesterolemic rats fed ortanique peel polymethoxylated flavones extract

Curtis Omar Green1,2, Andrew O’Brien Wheatley2,1, Donovan Anthony McGrowder4, Lowell Lloyd Dilworth2, Helen Nosakhare Asemota2,3

1Tropical Medicine Research Institute, 2Department of Basic Medical Sciences (Biochemistry Section), 3Biotechnology Centre, 4Department of Pathology, University of the West Indies, Kingston, Jamaica

Summary
The primary aim of this study was to investigate the effects of ortanique peel polymethoxylated flavones extract (PMFort) on antioxidant enzymes activities and lipid peroxide levels in organs of hypercholesterolemic and normal rats. Thirty Sprague-Dawley rats were fed high cholesterol diets supplemented with 1.5% PMFort and niacin respectively for 49 days. Hypercholesterolemic rats fed PMFort had significant reductions in malondialdehyde levels in the liver and brain compared to untreated hypercholesterolemic control rats. This reduction also occurred in the brain of the rats fed niacin. The activities of catalase, glutathione reductase, transferase and peroxidase were significantly reduced in the spleen, brain and liver of hypercholesterolemic rats fed PMFort compared to control. The activities of these enzymes were only reduced in the brain and liver of rats fed niacin. The results would suggest that PMFort modulates hypercholesterolemia-associated organ injury and oxidative stress in rat organs. PMFort could therefore be a suitable candidate of natural origin for prophylactic and therapeutic treatment of hypercholesterolemia-associated oxidative stress and organ injury.

Key words: hypercholesterolemia; ortanique; antioxidant enzymes; polymethoxylated flavones

INTRODUCTION
We have demonstrated in previous publications that Ortanique peel PMF extract (PMFort) is a very potent hypolipidemic supplement that significantly reduced serum total, LDL, VLDL and triglycerides levels and increased HDL cholesterol levels (Green et al. 2011a). We also derived the mechanism of action which included reductions in the hepatic activity of the rate-limiting cholesterol synthesizing enzyme 3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA HMG-CoA) reductase as well as absorption of cholesterol in the small intestines due to reductions in villi length and goblet cell proliferation. Our histopathological findings also demonstrated that PMFort ameliorated hypercholesterolemic-associated organ injury (Green et al. 2011b). Therefore another objective that warrants further exploration is to investigate the effects of PMFort on antioxidant enzymes activity and organ injury. This is important as several studies have shown that hypercholesterolemia usually results in oxidative stress and since flavonoids are potent antioxidants they could be explored as possible supplements for treating hypercholesterolemia-induced oxidative stress.
Flavonoids are a ubiquitous family of phytochemicals, inclusive of polymethoxylated flavones, that exhibit a broad spectrum of pharmacological properties (Harborne 1993, Middleton et al. 2000, Manthey and Grohmann 2001, Green et al. 2007). They represent a highly diverse class of secondary plant metabolites with about 9000 known structures (Martens and Mithofer 2005). Flavonoids are common in fruits and vegetables and may function as natural antioxidants through their ability to suppress reactive oxygen species (ROS) formation and due to their lower redox potentials (Affany et al. 1987, Halliwell and Gutteridge 1999, Pietta 2000). This is an important property as antioxidants can act as free radical scavengers and may also chelate peroxidant metals, reducing their capacity to produce free radicals. ROS are produced as normal products of aerobic metabolism but can be elevated under certain pathophysiological conditions (Sies 1997, Lee et al. 1998). Reactive oxygen intermediates such as hydroxyl radicals (HO·), superoxide anions (O2·−) and hydrogen peroxide (H2O2) at low concentrations may be beneficial or even indispensable in processes such as intracellular messaging and defense against micro-organisms (Schulze-Osthoff et al. 1997, Sun et al. 1998, Vogt et al. 1998). On the other hand high doses and/or inadequate removal of ROS result in oxidative stress, which may cause severe metabolic malfunctions and damage to biological macromolecules (Lledias et al. 1998). A plethora of non-enzymatic and enzymatic antioxidant defenses exists, including superoxide dismutase (SOD), glutathione peroxidase (GPX) and catalase (CAT).

Pathological conditions that predispose to cardiovascular events, such as hypertension, hypercholesterolemia, and diabetes, are associated with oxidative stress (Mataix et al. 1998, Wassmann et al. 2004). There is considerable evidence that hypercholesterolemia is a major risk factor for progression of coronary atherosclerosis and is associated with an increase in the incidence of myocardial ischemia and cardiac events (Kannel et al. 1971, Smith et al. 1992). One mechanism that may underline this degradation in coronary vascular function is an alteration in oxidative status. Increased production of several oxidants such as peroxynitrites, as well as peroxidation compounds and oxidative end-products such as PGF2α-isoprostanes as well as a shift in oxidative status with a decrease in nitric oxide (NO) and an increase in oxygen radicals may have a deleterious effect on vascular permeability (Chait et al. 1993, Napoli et al. 1995, Davi et al. 1997). The primary aim of this study was to determine the effect of PMF on lipid peroxide levels and the activities of the endogenous antioxidant enzymes in the major organs of rats to determine whether or not they ameliorate hypercholesterolemia-associated organ injury and oxidative stress.

MATERIALS AND METHODS

Materials

Chemical reagents were purchased from Sigma (St. Louis, USA). PMFs extract containing tangeretin – TAN (29%), nobiletin – NOB (24%), tetramethyl-scutellarein – TMS (23%), sinensetin – SIN (10%), hexamethyl-o-quercetagetin – QUE (10%) and heptamethoxyflavone – HMF (4%) was isolated from Ortanique peel in reagent grade methanol using a method previously described (Green et al. 2007). The extract was collected and washed extensively with hexane to remove the volatile oil constituents and other hexane soluble contaminants. The hexane-washed residue was dissolved in chloroform, filtered, dried by rotary evaporation, and analyzed for PMF content.

Animals and diets

The animal protocol was approved by the University of the West Indies (Mona) Ethics Committee. Thirty adult Sprague-Dawley rats were obtained from the Animal House of the University of the West Indies, Mona Campus. They were housed in stainless steel cages that were maintained daily. The cages were placed in a room that was kept on a 12/12-hour light/dark cycle and were fed normal rat chow for one week. The rats were weighed (average body weight, 343 g), labeled and placed into five groups of six rats each, as follows: 1. Normal rats fed rat chow, 2. Normal rats fed 1.5% PMFs extract and, 3. Hypercholesterolemic rats fed a high cholesterol diet supplemented with 1.5% PMFs extract and, 4. Hypercholesterolemic rats fed a high cholesterol diet supplemented with the cholesterol reducing drug niacin at a dose of 1.5%. Food and water were provided *ad libitum*. Body weights were monitored weekly, and food consumption was estimated daily for 49 days by giving rats a known amount of food and by re-weighing food each day and calculating the difference. At the end of the feeding period, rats were sacrificed and internal organs were excised, weighed and frozen in liquid nitrogen and stored at –80 °C until required for analysis. Antioxidant enzymes extraction was done according to a modified method of Ibrahim et al. (1997). Weighed frozen tissue
samples were partially thawed in ice-cold 1.55 mol/l KCl in 0.05 mol/l phosphate buffer, pH 7.4 using Teflon Potter-Elvehjem homogenizer. The homogenates were then centrifuged for thirty minutes at 4 °C at 14,000 rpm and supernatant stored –80 °C for determination of antioxidant enzyme activity (glutathione-S-transferase, glutathione reductase, glutathione peroxidase, superoxide dismutase and catalase). The activity of glutathione-S-transferase was determined according to the method of Habig et al. (1974). Glutathione peroxidase activity was determined according to a modified coupled assay procedure of Paglia and Valentine (1967). Glutathione reductase activity was determined by the method of Carlberg and Mannervik (1985). The activity of catalase was measured by monitoring the decomposition of H₂O₂ as described by Stern (1937) and Beers and Siger (1952). The activity of superoxide dismutase (SOD) was measured by using a SOD assay kit obtained from Dojindo Molecular Technologies, Inc. (Rockville, USA) according to instructions within the technical manual, 2006. Lipid peroxidation was determined by the method of Ohkawa et al. (1979).

Protein was determined according to the method of Bradford (1976).

Statistical analysis
The results were expressed as mean value ± the standard error of the mean (SEM). Analysis of the variance (ANOVA) was used to test for the differences among all the groups at the significance level α=0.05. To find out where the significant difference occurred among the groups, the Duncan’s multiple range test was used to compare the means. All statistical analyses were done using the statistical program SPSS version 16 (2007).

RESULTS

The effects of PMF_{fort} on lipid peroxidation in organs of hypercholesterolemic rat

Fig. 1 shows the lipid peroxide levels in the organs of rats fed different diets. Rats in the untreated hypercholesterolemic group had significant increases in liver lipid peroxide levels (3382±480 nmol/MDAg/g wet wt). This increase was however significantly reduced in the groups fed niacin and PMF_{fort}. The reduction in lipid peroxides level in the liver of hypercholesterolemic rats fed niacin (2000±202.7 nmol/MDAg/g wet wt) was significantly less than that exhibited by the hypercholesterolemic rats fed PMF_{fort} (741±128 nmol/MDAg/g wet wt). Hypercholesterolemic rats fed PMF_{fort} (809±293 nmol/MDAg/g wet wt) and niacin (825±68.76 nmol/MDAg/g wet wt) had significant decreases in the lipid peroxide levels in the brain relative to the untreated hypercholesterolemic group (2873±367.2 nmol/MDAg/g wet wt). No significant changes were however observed in the lipid peroxide levels in the spleen, heart and kidneys of rats fed niacin or PMF_{fort}.

The effects of PMF_{fort} on catalase activity in organs of hypercholesterolemic rat

Table 1 shows the results of the activity of the antioxidant enzyme catalase in the organs of hypercholesterolemic and normal rats fed their respective diets. Hypercholesterolemic rats whose diets were supplemented with PMF_{fort} and niacin had significant reductions in the activity of catalase in the heart (3.09±0.09, 18.07±0.13 µmol H₂O₂/min/mg protein), liver (1.01±0.04, 19.94±0.13 µmol H₂O₂/min/mg protein), brain (1.13±0.11, 2.23±0.13 µmol H₂O₂/min/mg protein) and kidney (8.48±0.31, 5.5±0.69 µmol H₂O₂/min/mg protein) compared to the untreated hypercholesterolemic group.

The effects of PMF_{fort} on glutathione transferase activity in organs of hypercholesterolemic rat

Table 2 shows the results of the activity of the antioxidant enzyme glutathione transferase in the organs of hypercholesterolemic and normal rats fed their respective diets. Hypercholesterolemic rats whose diets were supplemented with PMF_{fort} had significant reductions in the activity of glutathione transferase in the spleen (0.07±0.002 nmol/min/mg protein), liver (2.05±0.12 nmol/min/mg protein), brain (0.26±0.01 nmol/min/mg protein) and kidney (0.014±0.02 nmol/min/mg protein) compared to the untreated hypercholesterolemic group. Significant reductions were observed in glutathione transferase activity in the brain (0.28±0.04 nmol/min/mg protein), liver (2.37±0.42 nmol/min/mg protein) and kidney (0.02±0.07 nmol/min/mg protein) but not the spleen (0.16±0.07 nmol/min/mg protein) of rats fed niacin compared to the untreated hypercholesterolemic rats. There were however, no significant reductions in glutathione transferase activity in the heart in any of the treatment groups.

The effects of PMF_{fort} on superoxide dismutase activity in organs of hypercholesterolemic rat

Fig. 2 shows the effect of the treatment diets on SOD activity in the organs. Hypercholesterolemic rats fed PMF_{fort} and niacin had significant reductions in the activity of SOD in the heart (36.7±0.33, 36.9±1% inhibition) and liver (35.01±1.89, 37.9±1.05% inhibition) compared to the untreated hyper-
cholesterolemic rats. No significant changes in the SOD activity were observed in the spleen, kidney and brain of the hypercholesterolemic rats whose diets were supplemented with PMForts relative to the untreated hypercholesterolemic rats.

Fig. 1. Effects of ortanique peel PMFs extract on lipid peroxide levels in organ homogenates.

* statistically significant versus Hyp. fed H.C diet, H.C = high cholesterol, Hyp. = hypercholesterolemia

Table 1. Effect of PMForts on the activity of catalase in rat organs.

<table>
<thead>
<tr>
<th>Feeding/treatment groups</th>
<th>Spleen</th>
<th>Brain</th>
<th>Liver</th>
<th>Heart</th>
<th>Kidney</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal fed normal diet</td>
<td>172±10.45*</td>
<td>2.95±0.14*</td>
<td>5.22±0.22*</td>
<td>10.50±0.56*</td>
<td>5.82±0.47*</td>
</tr>
<tr>
<td>Normal fed PMFs extract</td>
<td>158.21±9.62*</td>
<td>3.18±0.10*</td>
<td>2.37±0.36*</td>
<td>19.4±0.10*</td>
<td>4.38±0.21*</td>
</tr>
<tr>
<td>Hyp. fed H.C. diet</td>
<td>223.87±5.85</td>
<td>21.49±0.14</td>
<td>114.21±9.21</td>
<td>216.98±20.14</td>
<td>15.45±0.84</td>
</tr>
<tr>
<td>Hyp. fed PMFs extract</td>
<td>188.73±9.77*</td>
<td>1.13±0.11*</td>
<td>1.01±0.04*</td>
<td>3.09±0.09*</td>
<td>8.48±0.31*</td>
</tr>
<tr>
<td>Hyp. fed niacin</td>
<td>229.75±13.34</td>
<td>2.23±0.12*</td>
<td>19.94±0.13*</td>
<td>18.07±0.13*</td>
<td>5.51±0.69*</td>
</tr>
</tbody>
</table>

* statistically significant as compared with Hyp. fed H.C diet. H.C = high cholesterol, Hyp. = hypercholesterolemia
Fig. 2. Effect of PMF™ on the activity of superoxide dismutase in organs of rats.
* symbols as in Fig. 1

Table 2. Effect of PMF™ on the activity of glutathione transferase in rat organs

<table>
<thead>
<tr>
<th>Feeding/treatment groups</th>
<th>Spleen (nmol/min/mg protein)</th>
<th>Brain (nmol/min/mg protein)</th>
<th>Liver (nmol/min/mg protein)</th>
<th>Heart (nmol/min/mg protein)</th>
<th>Kidney (nmol/min/mg protein)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal fed normal diet</td>
<td>0.08±0.002*</td>
<td>0.25±0.03*</td>
<td>1.46±0.55*</td>
<td>0.21±0.013</td>
<td>0.01±0.001*</td>
</tr>
<tr>
<td>Normal fed PMFs extract</td>
<td>0.09±0.02*</td>
<td>0.28±0.02*</td>
<td>1.5±0.41*</td>
<td>0.19±0.013</td>
<td>0.016±0.18*</td>
</tr>
<tr>
<td>Hyp. fed H.C. diet</td>
<td>0.12±0.02</td>
<td>0.44±0.05</td>
<td>3.54±0.68</td>
<td>0.22±0.038</td>
<td>0.053±0.03</td>
</tr>
<tr>
<td>Hyp. fed PMFs extract</td>
<td>0.07±0.002*</td>
<td>0.26±0.01*</td>
<td>2.05±0.17*</td>
<td>0.18±0.12</td>
<td>0.014±0.018*</td>
</tr>
<tr>
<td>Hyp. fed niacin</td>
<td>0.16±0.07</td>
<td>0.28±0.04*</td>
<td>2.37±0.42*</td>
<td>0.21±0.057</td>
<td>0.020±0.065*</td>
</tr>
</tbody>
</table>

* symbols as in Table 1

The effects of PMF™ on glutathione reductase activity in organs of hypercholesterolemic rat

Fig. 3 shows the results of the activity of the antioxidant enzyme glutathione reductase in the organs of hypercholesterolemic and normal rats fed their respective diets. Hypercholesterolemic rats whose diets were supplemented with PMF™ had significant reductions in the activity of glutathione reductase in the liver (18.2±1.15 nmol/min/mg protein), brain (11.45±2.25 nmol/min/mg protein),
Fig. 3. Effect of PMF^{pet} on the activity of glutathione reductase in organs of rats.
* symbols as in Fig. 1

Fig. 4. Effect of PMF^{pet} on the activity of glutathione peroxidase in organs of rats.
* symbols as in Fig. 1
spleen (20.56±2.89 nmol/min/mg protein) and heart (10.24±1.59 nmol/min/mg protein) when compared with the untreated hypercholesterolemic group. There were however, no significant reductions in glutathione reductase activity in the liver (47.23±1.33 nmol/min/mg protein), spleen (39.48±1.66 nmol/min/mg protein) or brain (18.95±3.33 nmol/min/mg protein) except in the heart as a result of niacin supplementation. Also, no significant increase was observed in the activity of glutathione transferase in the kidney in any of the treatment groups.

The effects of PMF_{fort} on glutathione peroxidase activity in organs of hypercholesterolemic rat

Fig. 4 shows the results of the activity of the antioxidant enzyme glutathione peroxidase in the organs of hypercholesterolemic and normal rats fed their respective diets. Hypercholesterolemic rats whose diets were supplemented with PMF_{fort} and niacin had significant reductions in the activity of glutathione peroxidase in the liver (0.78±0.33, 0.95±0.02 nmol/min/mg protein), brain (0.54±0.07, 0.59±0.09 nmol/min/mg protein), spleen (2.18±0.33, 2.07±0.034 nmol/min/mg protein) and heart (5.61±0.22, 5.64±0.63 nmol/min/mg protein) compared to the untreated hypercholesterolemic group. There were however no significant increase in the activity of glutathione transferase in the kidney in any of the treatment groups.

DISCUSSION

In hypercholesterolemia, one of the mechanisms that might be activated and might hinder coronary vascular function is a shift in scavenging activity and redox status, a state known as increased oxidative stress (Montilla et al. 2004). Numerous studies show that a close relationship exists between high blood cholesterol and atherosclerosis, it has also been suggested that this relationship may be dependent on enhanced oxidative stress (Domagala et al. 1989, Ohara et al. 1993, Prasad et al. 1997). Studies have also shown that cholesterol rich diet increases the formation of peroxynitrile, a toxic reaction product of superoxide and nitric oxide in the rat myocardium (Onody et al. 2003). Work done by Eddy et al. (1998) showed that rats that develop hypercholesterolemia consuming a high fat diet had elevations in renal lipid peroxidation products compared to rats that were fed normal rat chow.

Parmar and Kar (2007) reported that citrus peel extract reduced lipid peroxidation levels in the liver and kidneys of animal model of diet-induced atherosclerosis and thyroid dysfunctions. To our knowledge, this study is the first report on the effect of PMF_{fort} on lipid peroxide levels in hypercholesterolemic rats. The results showed that supplementation of the diet of hypercholesterolemic rats with PMF_{fort} resulted in significant reductions in the lipid peroxide levels in the liver and brain compared to the untreated hypercholesterolemic group. Supplementation of the diet of hypercholesterolemic rats with niacin however significantly increased lipid peroxide levels in the liver relative to the hypercholesterolemic group fed PMF_{fort}. No significant changes were however observed in the lipid peroxide levels in the kidney, spleen and heart in any of the groups studied.

Studies have shown that antioxidant therapy attenuates elevations in lipid peroxidation products (Eddy et al. 1998). The PMFs extract may have reduced lipid peroxidation by acting as antioxidants and hence aiding the endogenous antioxidant enzymes (e.g. superoxide dismutase, glutathione peroxidase and catalase) involved in the scavenging/inactivation of the reactive oxygen species or redox metal ions before lipid peroxidation takes place (Sung and Park 1999). Several studies show that feeding animals a high cholesterol diet results in intracellular lipid accumulation in cardiomyocyte as well as alterations in the structural and functional properties of the myocardium (Melax and Leeson 1975, Hexeberg et al. 1993, Onody et al. 2003). Work done by Prasad et al. (1997) showed that diet-induced hypercholesterolemia produces oxidative stress in the myocardium. Hypercholesterolemia also resulted in increases in the levels of lipid peroxidation product malondialdehyde (MDA) and chemiluminescence (M-CL), a measure of antioxidant reserve, and activities of antioxidant enzymes (CAT, and GSH-P) but a decrease in the activity of SOD in cardiac muscles of rabbits (Prasad et al. 1997).

Prior to this study the effect of PMFs on antioxidant enzymes activities in the heart of hypercholesterolemic rats was never assessed. The results in this study showed that supplementation of the diets of hypercholesterolemic rats with PMF_{fort} and niacin resulted in significant reductions in the activities of catalase, superoxide dismutase, glutathione reductase and glutathione peroxidase in
the heart compared to the untreated hypercholesterolemic group. No significant differences were however observed in the activity of glutathione transferase in the heart in any of the groups studied.

Several studies have shown that feeding rats a high cholesterol diet results in hepatic steatosis and elevations in antioxidant enzymes activities in the liver (Mahfouz and Kummerow 2000, Perlemuter et al. 2005). Reports on the hepatic activity of antioxidant enzymes in hypercholesterolemic rats tend to indicate elevated activities as a result of citrus consumption. Kim et al. (2004) reported that superoxide dismutase, catalase, and glutathione reductase activities were all significantly increased by supplementation of the citrus flavonoid naringin in hypercholesterolemic mice compared to control. Deyhim et al. (2006) also reported elevations in antioxidant enzymes activities in orchidectomized rats as a result of citrus juice consumption. In this study, however, supplementation of the diets of hypercholesterolemic rats with PMFort resulted in significant reductions in the hepatic activities of catalase, glutathione peroxidase, glutathione transferase and glutathione reductase compared to the untreated hypercholesterolemic group. Supplementation of the diets of hypercholesterolemic rats with niacin also resulted in significant reductions in the hepatic activities of catalase and glutathione peroxidase but did not significantly alter the activity of glutathione reductase compared to the untreated hypercholesterolemic group.

The potential link between dyslipidemia and renal disease was first postulated by Moorhead et al (1982). Since then numerous dietary studies showed that hypercholesterolemia causes oxidative stress in the kidneys of experimental animal models (Stulak et al. 2001, Chade et al. 2002, 2007, Montilla et al. 2004). Supplementation of the diets of hypercholesterolemic rats with PMFort and niacin resulted in significant reductions in the activities of catalase and glutathione transferase in the kidney but had no significant effect on the activities of glutathione reductase, glutathione peroxidase or superoxide dismutase compared to the untreated hypercholesterolemic group.

Oxidative stress in hypercholesterolemia may occur by virtue of augmented generation of ROS and oxidation of LDLS (Lerman and Textor 2001, Chade et al. 2002). PMFort may be decreasing the activities of the endogenous antioxidant enzymes by acting as antioxidants and are being preferentially oxidised by free radicals. This property of PMFort is important as both animal and human studies show a positive role for antioxidants in the prevention of coronary heart disease – CHD (Kritharides and Stocker 2002).
On evaluation of integrity of organs following consumption of PMFort, the results suggest that the integrity of the organs – kidney, spleen, brain, liver and heart – was preserved in each, as there were no significant increases in lipid peroxides levels or antioxidant enzymes activities in the organs of normal or hypercholesterolemic rats fed PMFort. In the hypercholesterolemic state, the levels and activities of lipid peroxidation products and antioxidant enzymes in rat organs were increased. In fact PMFort ameliorated oxidative stress caused by hypercholesterolemia, as shown in the significant reductions in lipid peroxide levels as well as reductions in antioxidant enzyme activities in the liver, heart, kidney, spleen and brain. PMFort could therefore be a suitable candidate for further investigations that involve prophylactic or therapeutic treatment of hypercholesterolemia.

ACKNOWLEDGEMENTS

The authors of this paper are grateful to the School of Graduate Studies and Research for funding, Dr. Dewayne Stennett and Mr. Dennis Bailey for their assistance.

DISCLOSURE

No conflict of interest.

REFERENCES

Mahfouz MM, Kummerow FA. Cholesterol-rich diets have different effects on lipid peroxidation, cholesterol oxides, and antioxidant enzymes in rats and rabbits. J Nutr Biochem. 11: 293–302, 2000.

