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Abstract
Lung cancer (LC) incidence represents 11.5% of all new cancers, resulting in 1.72 million deaths worldwide in 2015. With the aim to 
investigate the capability of the electronic nose (e-nose) technology for detecting and differentiating complex mixtures of volatile organic 
compounds in biofluids ex-vivo, we enrolled 50 patients with suspected LC and 50 matching controls. Tissue biopsy was taken from 
suspicious lung mass for histopathological evaluation and blood, exhaled breath, and urine samples were collected from all participants 
and qualitatively processed using e-nose. Odor-print patterns were further analysed using the principal component analysis (PCA) 
and artificial neural network (ANN) analysis. Adenocarcinoma, non-small cell LC and squamous cell carcinoma were the predominant 
pathological types among LC patients. PCA cluster-plots showed a clear distinction between LC patients and controls for all biological 
samples; where the overall success ratios of classification for principal components #1 and #2 were: 95.46, 82.01, and 91.66% for blood, 
breath and urine samples, respectively. Moreover, ANN showed a better discrimination between LC patients and controls with success 
ratios of 95.74, 91.67 and 100% for blood, breath and urine samples, respectively. The e-nose is an easy noninvasive tool, capable of 
identifying LC patients from controls with great precision.
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Introduction

Lung cancer (LC) is a major public health problem worldwide 
and its incidence represents 11.5% of all new cancers, that is 
2.02 million people, which resulted in 1.72 million deaths in 
2015 (Fitzmaurice et al., 2017). The average incidence rate 
of tracheal, bronchus, and LC in Egypt has been estimated to 
be 5.69% among males and 2.70% among females (4.22% for 
both) in 2008–2011. In fact, tracheal, bronchus, and LC cases 
are estimated to rise from 5233 in 2015 to 7293 in 2025, based 
on a 121.6% increase estimations in the Egyptian population 
(Ibrahim et al., 2014). The prognosis of LC patients depend di-
rectly on tumor size and its spread at the time of diagnosis; 

with survival time being inversely proportional to disease pro-
gression, many efforts have been extended to detect the dis-
ease at an early phase (Nardi-Agmon and Peled, 2017; Schmidt 
and Podmore, 2015).

We have recently shown the potential use of an electronic 
nose (e-nose) based on artificial neural network (ANN) for de-
tecting volatile organic compounds (VOCs) in biofluids of can-
cer and tuberculosis patients (Mohamed et al., 2014; 2017a, b). 
VOCs, which are carbon-based chemicals classified on basis of 
their retention time and boiling point (WHO, 1989), emitted 
in the headspace over collected body fluids ex-vivo (i.e. blood, 
exhaled breath, urine, feces, and sweat) are believed to reflect 
endogenous metabolic processes at the tissue level, such as 
inflammation and oxidative stress (Nardi-Agmon and Peled, 
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2017; Schmidt and Podmore, 2015). These VOCs are typically 
highly reactive substances capable of damaging DNA and pro-
teins, a process that over time might promote developing can-
cer in various tissues. It was hypothesized that these patho-
logical processes can also generate new VOCs, which are not 
produced during normal physiological processes, and/or alter 
the concentrations of existing ones, may therefore serve as bi-
omarkers for detecting cancers (Schmidt and Podmore, 2015).

Patients often avoid regular preventive examinations and 
early screening procedures such as tissue biopsies, colonosco-
pies, X-ray mammographies, uterine dilation, and curettage 
because many of them are invasive and relatively expensive. 
Adding to their present hazards of significant negative side ef-
fects, they are often sufficiently painful to discourage patients 
from participating in preemptive, preventive screening proce-
dures. We have employed e-nose devices, which are gas-detec-
tion technologies, for use as medical tools for various clinical 
applications. These rapid, efficient and relatively cheap devices 
have proven useful for the non-invasive diagnosis and early 
detection of chronic diseases and cancers, including LC. The 
benefits of cancers early detection are obvious, since progno-
ses are greatly improved due to early treatments.

The objective of the present study was to investigate the 
potential use of the e-nose technology for monitoring the 
headspace VOCs over blood, breath, urine and tissue biopsy 
samples collected from histopathologically proven LC patients 
and controls.

 
Materials and methods

This is a prospective case-control study, which enrolled 50 LC 
patients with either central or peripheral lung mass, who were 
admitted to the Alexandria University Main Hospital in Alex-
andria, Egypt. Other 50 patients without lung mass, who un-
derwent bronchoscopy for clinical indications, mostly hemop-
tysis and pulmonary infection, were enrolled as controls. 
Patients with extra-thoracic malignancy, active tuberculosis 
and histopathological diagnosis of small cell LC were excluded 
from the study protocol. Patients with metabolic comorbidi-
ties (e.g. diabetes mellitus, obesity, and dyslipidemia), or renal 
failure, which could interfere with VOCs spectrum, were also 
excluded from the study protocol. All participants provided 
signed informed consent prior to their inclusion in the study. 
The study protocol was approved by the Ethical Committee of 
the Medical Research Institute, Alexandria University, Alexan-
dria, Egypt.

Physical examination and bronchoscopy
History taking was carried out for all participants including 
sex, age, weight, height, body mass index (BMI) and smoking 
history. All participants also underwent clinical and radiologi-
cal examinations (i.e. chest X-ray and Computed Tomography) 
to assess participants’ general health and find other suggestive 
factors due to LC (e.g. blood in the sputum, significant weight 
loss, and radiological changes in chest X-ray). Bronchoscop-
ic and thoracoscopic investigations were carried out using a 
fiberoptic bronchoscope (Pentax-V18, Tokyo, Japan) under lo-
cal anaesthesia with conscious sedation using midazolam 3–7 
mg i.v., with or without propofol (Shure et al., 1985). Oxygen 
was supplied using nasal cannula in order to maintain satura-
tion above 90% during the procedure. Moreover, oxygen sat-
uration, blood pressure and electrocardiogram were continu-
ously monitored throughout the procedure.

Biological sample collection
In case of presence of endobronchial mass or mucosal infiltra-
tion, forceps biopsies were taken. In case of peripheral lung 
mass or the visibility of pleural involvement, rigid thoracos-
copy was performed and tissue pleural biopsy/lung biopsy was 
taken for evaluation. Furthermore, bronchoscopic forceps bi-
opsies were taken from the healthy endobronchial mucosa of 
controls. Tissue biopsy samples were divided into two parts; 
one for routine histopathological evaluation and the other for 
e-nose measurement.

We also collected 20 ml middle-stream early morning urine 
samples in 200 ml sterile screw-capped containers and 1 ml 
blood samples in 4 ml heparinized vacutainer tubes from all 
participants. Mouth exhaled breath samples were collected in 
inert disposable sterile plastic sacks with a tight closing seal, 
using the system we detailed earlier (Mohamed et al., 2003; 
2017a). The system consists of an elastic rubber tube with a 
one-way metal valve at its end, which was introduced into an 
inert disposable plastic sack. We instructed participants to sit 
comfortably, inhale deeply and exhale fully for five min, prior 
to using exhaling deeply from the mouth in the other end of 
the tube to fill sacks, for excluding air from the upper airways 
and eliminating environmental influences such as smoke, va-
pors and odors.

Electronic nose measurements
We used an e-nose (PEN3, Airsense Analytics GmbH, Schwer-
in, Germany) to detect odors of VOCs in the headspace over 
blood, urine and in breath samples at room temperature 25 °C, 
at the Medical Biophysics Department, Medical Research Insti-
tute, Alexandria University, Alexandria, Egypt. Dry air brings 
odor to the e-nose chamber containing 10 different metal ox-
ide sensors through the inlet at a rate of 400 ml/min. Solenoid 
valves alternately switched the pure dry air and the headspace 
sample odors, and the difference in the sensor output conduct-
ance (G/Go) was recorded on the monitor for the whole period 
of measurement.

Following a 50 s flushing time and a 10 s zero point trim 
time, sealed tubes/containers were connected subsequently 
to the e-nose inlet through Teflon tubing to a long lure-lock 
needle perforating the seal of the tube/container, for a 60 s 
measurement period. A second short needle was also insert-
ed through the seal to allow room air into the tube/contain-
er. During the flushing period, sensors were rinsed with dry 
air to return signals back to their baseline (G/Go = 1). Stable 
sensor response patterns in the plateau region were extract-
ed and further analyzed using Principal Components Analysis 
(PCA) and ANN techniques, as detailed earlier (Mohamed et 
al., 2017a).

Principal components analysis
We used PCA technique to find the principal components that 
maximize the variance in e-nose sensor responses of each da-
taset (i.e. blood, breath, urine and tissue biopsy) between LC 
patients and controls. That is, PCA reduced the 10-dimension-
al correlated sensor responses to only 2-dimensional orthogo-
nal components, while retaining the distance between points 
in a dataset. It starts with a correlation matrix between sensor 
responses, which is based on angles between vectors, to derive 
linear combinations of variables that reflect basic constructs in 
the sensor responses. PCA is the optimum transform in least 
square terms, where the greatest variance by any projection 
of the sensor responses comes to lie on the first coordinate 
(i.e. principal component #1) and the second greatest variance 



Mohamed et al. / J Appl Biomed 63

on the second coordinate (i.e. principal component #2) (Mo-
hamed et al., 2013; 2017a, b). Cluster-plots, which are scatter 
plots of transformed sensor response points bounded by an 
ellipse, were depicted and used for evaluation of the success in 
classification of blood, breath, urine, and tissue biopsy data-
sets. This was given numerically by the overall variance, which 
equals the summation of both principal component #1 and #2 
of each dataset.

Artificial neural network analysis
ANNs are computational paradigms based on mathematical 
models, which can be used to model complex relationships 
between inputs and outputs or to find patterns in data. An 
ANN consists of an interconnected group of artificial neu-
rons operating in parallel, whose function is determined by 
network structure, connection strengths, and the processing 
performed in training and testing modes at neurons. During 
the training process, a set of examples is presented to the ANN 
to guess their output. Training is an adaptive process during 
which the weights associated to all the interconnected neurons 
change in order to provide the best possible response to all the 
observed stimuli. Estimation of LC diagnosis was carried out 
using the neural pattern recognition application of MATLAB 
9.2 (MathWorks® Inc., Natick, MA, USA). It combines a modu-
lar, icon-based network design interface with an implementa-
tion of advanced artificial intelligence and learning algorithms 
using intuitive wizards together with an Excel™ interface. This 
provides a user-friendly intuitive interface to easily setup a 
simulation that automatically builds, trains and tests multi-
ple neural network topologies, and generates a report of the 
results including the best performing model (Abdel-Mageed et 
al. 2015; Mohamed et al., 2017a).

The variables sex, age, weight, height, and BMI in addi-
tion to 10-sensor responses for blood, breath, urine and tis-
sue biopsy samples were prepared in an Excel database as the 
input parameters. The Excel database was loaded within the  
MATLAB and used for classification according to reference 
pathological evaluation of biopsy. We used 60% of data for 
training, 25% for testing and 15% for validation. That is, of 
the 100 records examined by the ANN for being LC patients 
or controls, there were 60 records set for training, 25 for test-
ing and 15 for validation (Mohamed et al., 2017a). We used a 
two-layer feedforward network, with a sigmoid transfer func-
tion in the hidden layer, and a softmax transfer function in the 
output layer. The default number of hidden neurons was set 
to 10. The number of output neurons was set to two, which is 
equal to the number of elements in the target vector (i.e. either 
LC or control).

Statistical analysis
Data were presented as mean ± standard deviation (SD). Two-
tailed t-test of significance was used to compare between var-
ious continuous variables of both groups. Significant P value 
was considered if P < 0.05. SPSS statistical package (Version 
16; Chicago, IL, USA) was used for the analysis.

Confusion matrix, mean square error (MSE), Receiver 
Operating Characteristic (ROC) curve and area under curve 
(AUC) analysis; as well as predictive accuracy, sensitivity, and 
specificity for evaluating the ANN performance to identify/
classify LC patients from controls were given. ROC is a plot of 
the true positive rate (sensitivity) versus the false positive rate  
(1 – specificity) as the threshold is varied. A perfect test would 
show points in the upper-left corner, with 100% sensitivity 
and 100% specificity (Mohamed et al., 2018).

 
Results

The demographical and clinical characteristics for LC patients 
and controls are shown in Table 1. The majority of the LC 
patients were in the age range of 54–68 year, with a male to 
female ratio of 3 : 1, while controls were in the age range of 
51–62 year, with a male to female ratio of 2 : 1. There was no 
significant difference between both groups regarding sex, age 
or smoking status, yet the smoking index was significantly 
higher for LC patients than that for controls. That is, major 
number of LC patients were heavy smokers, since 52% report-
ed to have been smoking more than two packets of cigarettes 
per day, 20% quitted smoking 2–4 years ago, while 28% were 
non-smokers. On the other hand, 56% of the controls were 
mild smokers, who reported to have been smoking more than 
a packet of cigarettes per day, 16% were former smokers and 
the remaining 28% were non-smokers.

Furthermore, 64% of the LC patients were coughing up 
blood (hemoptysis), 72% suffering dyspnea, 50% were com-
plaining of chest pain, and 24% showed significant weight loss 
due to the loss of appetite. This was evident by significantly 
(P < 0.001) lower mean weight and BMI for LC patients as com-
pared to controls (Table 1). Thoracoscopic tissue biopsy was 
obtained from 16% of LC patients and 24% of controls while, 
the 84% of LC patients and 76% of controls who had central 
lesion were candidates to bronchoscopic forceps tissue biopsy. 
The majority of LC patients (72%) were in the advanced stages 
III and IV at time of admission and the remaining 28% were 
in early stages I and II that were pathologically proven to be 
carcinoid tumor (Table 1). Finally, histopathological analysis 
showed that adenocarcinoma was the most common diagnosis 
in 45.5% of LC cases, followed by undifferentiated non-small 
cell lung cancer (NSCLC) in 27.3% of them, then squamous cell 
carcinoma in 10%.

Table 1. Demographic and clinical characteristics for LC patients 
and controls

Controls Lung cancer

Sex M/F (%) 38/12 (76/24%) 34/16 (68/32%)

Age (year) 57.60 ± 10.80 59.50 ± 7.20

Weight (kg) 78.36 ± 4.42 69.10 ± 4.401

Body mass index (kg/m2) 29.49 ± 3.91 21.40 ± 3.601

Smoking status, n (%)
Current smoker
Former smoker
Non-smoker
Smoking index

28 (56%)
8 (16%)

14 (28%)
25.22 ± 19.30

26 (52%)
10 (20%)
14 (28%)

65.83 ± 36.431

Symptoms, n (%)
Hemoptysis
Dyspnea
Cough
Chest pain
Loss of appetite
Loss of weight

–
18 (36%)
20 (40%)
30 (60%)
14 (28%)
14 (28%)

32 (64%)1

36 (72%)1

32 (64%)1

25 (50%)
12 (24%)
12 (24%)

Biopsy type, n (%)
Thoracoscopy bronchoscopy
LC stage; n (%)

12 (24%)
38 (76%)

8 (16%)
42 (84%)

Stage I
Stage II
Stage III
Stage IV

−
−
−
−

4 (8%)
10 (20%)
20 (40%)
16 (32%)

1 P < 0.001 as compared to controls; LC, lung cancer.
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Fig. 1. Cluster plots of principal component #1 against principal 
component #2 for an array of 10 metal-oxide sensors based e-nose 
measurements when applied to the headspace of A) blood, B) breath and 
C) urine samples from LC patients and controls. LC, lung cancer, CTR, 
controls. (For colour resolution see the on-line edition.)

 

Fig. 2. Performance of ANN for all A) blood, B) breath and C) urine 
samples from LC patients and controls. ANN, Artificial Neural Network; 
LC, lung cancer.
(For colour resolution see the on-line edition.)

Cluster plots by PCA for blood, breath, and urine samples 
for LC patients and controls are shown in Fig. 1. A clear dis-
tinction between both groups is evident, where both principal 
components #1 and #2 explained more than 95.46, 82.01, and 
91.66%, respectively of the variance in signals. This means that 
e-nose was capable of identifying samples from each group 
with no false-positive (controls) or false-negative (LC patients) 
results. This strengthens the fact that the VOCs in the head-
space over blood, breath, and urine samples that overlap with 
VOCs for tissue biopsy samples of LC patients are significantly 
different from those for controls.

The confusion matrix and performance indices calculated 
for evaluating the ANN based on training, validation and test-
ing phases of blood, breath and urine samples for LC patients 
and controls is shown in Table 2. The accuracy of the ANN 
for identifying blood, breath, and urine samples were 95.74, 
91.67, and 100, respectively, as compared to pathological eval-
uation of biopsies. Moreover, the overall sensitivity and spec-

ificity of the ANN for classifying LC patients and controls was 
100% for urine samples, while those for blood samples were 
96.15% and 95.24% and for breath samples were 92.86 and 
90% (Table 2). The performance plot of a well-trained ANN for 
the MSE versus epochs is shown in Fig. 2. The best validation 
and testing performance of blood, breath, and urine samples 
were achieved at epochs 7, 6 and 6 with the lowest MSE of 
0.13, 0.20, and 0.20, respectively, for LC patients and controls. 
From these results, we can appreciate the highly successful dis-
crimination of the ANN between LC patients and controls for 
all measured samples.

ROC curve of sensitivity (i.e. true positive rate) versus 1 – 
specificity (i.e. false positive rate) for all blood, breath and urine 
samples from LC patients and controls, is shown in Fig. 3. The 
best ANN classification is shown for urine samples of the ROC 
space (Fig. 3C), which has an AUC of “1” representing 100% 
sensitivity and specificity. The second best classification is that 
for blood (Fig. 3A), flowed by breath samples (Fig. 3B).
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Table 2. Confusion Matrix and performance indices calculated for evaluating the ANN based on training, validation and testing phases for 
blood, breath, and urine samples from lung cancer (LC) patients and controls

Target output
ANN output

Blood (n = 47) Breath (n = 48) Urine (n = 51)

Controls Lung cancer Controls Lung cancer Controls Lung cancer

Controls 20 1 18 2 27 0

LC 1 25 2 26 0 24

Accuracy (%) 95.74 91.67 100

Sensitivity (%)1 96.15 (78.42–99.80) 92.86 (75.04–98.75) 100 (82.83–100)

Specificity (%)1 95.24 (74.13–99.75) 90 (66.87–98.25) 100 (84.50–100)

Prevalence (%)1 55.32 (40.24–69.54) 58.33 (43.28–72.07) 47.06 (33.16–61.40)

Positive predictive value (%)1 96.15 (78.42–99.80) 92.86 (75.04–98.75) 100 (82.83–100)

False positive (%)1 3.85 (0.20–21.58) 7.14 (1.25–24.96) 0 (0–17.17)

Negative predictive value (%)1 95.24 (74.13–99.75) 90 (66.87–98.25) 100 (84.5–100)

False negative (%)1 4.76 (0.25–25.87) 10 (1.75–33.13) 0 (0–15.50)

1 Numbers in parentheses are the “exact” Clopper-Pearson 95% confidence intervals (CI); ANN, artificial neural network.

 

Fig. 3. ROC curve analysis of sensitivity (true positive rate) against  
1 – specificity (false positive rate) for all A) blood, B) breath and C) 
urine samples from LC patients and controls. ROC, receiver operating 
characteristic; LC, lung cancer.

 
Discussion

LC is the most common malignant tumor and the leading cause 
of cancer death among men and women worldwide (AICR, 
2007; Mohamed et al., 2018). LC mortality is frequently as-
sociated with late diagnosis, therefore early diagnosis and im-
mediate initiation of treatment are essential for significantly 
improving overall survival in high risk populations of asymp-
tomatic patients (Nardi-Agmon and Peled, 2017; Schmidt and 
Podmore, 2015). Novel screening tests have been developed 
for the early diagnosis of LC, which has been remodeled on ba-
sis of its own genetic, biological and metabolic identity, such as 
exhaled breath analysis, serum biomarkers and urine analysis 
(Gasparri et al., 2018; Mohamed et al., 2018).

The majority of LC patients in this study suffered from 
hymoptysis and loss of appetite, which were responsible for 
significant weight and BMI loss. LC is responsible for both 
symptoms, yet heavy smoking given by the significantly high-
er smoking index for LC patients as compared to controls (i.e., 
65.83 ± 36.43 vs. 25.22 ± 19.30, Table 1), is also responsible 
for the loss of appetite and loss of weight. Smoking is both a 
powerful risk factor for LC (Alberg et al., 2005), and is inverse-
ly associated with body weight (Wannamethee et al., 2001). 
Slimness is associated with increased LC risk, though the link 
generally has been attributed to smoking and preclinical dis-
ease. El-Zein et al. (2013), examined the relationship between 
BMI and LC, using an alternative approach to represent par-
ticipants’ smoking history, which took into account several 
dimensions of smoking behavior. They showed that the asso-
ciation between BMI and LC is unlikely due to residual con-
founding by smoking. Yang et al. (2009), showed that lower 
BMI is associated with increased risk of LC incidence and mor-
tality, albeit higher BMI has been associated with an increased 
risk of several other cancers (e.g., esophageal, pancreatic, 
colorectal, endometrial, postmenopausal breast, and prostate 
cancers) (AICR, 2007).

While early detection of small cancerous lesions carries the 
benefit of wider treatment options and better prognosis of LC 
patients, the process of obtaining a tissue biopsy to confirm a 
cancerous tissue is not free of complications and bears incon-
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veniences and stress to the patient. Despite advances in tech-
nology and intensive research efforts, no molecular biomarker 
capable of identifying LC in the early stages has been found 
to be suitable for clinical use (Nolen et al., 2015; Zhang et al., 
2015). Research efforts have been focused on identifying sen-
sitive and specific blood-based biomarkers for early detection 
of LC, such as: identification of proteins, protein panels or an-
tibodies to tumor-associated antigens; analysis of epigenetic 
changes such as methylation; microRNA profiling; and gene 
expression profiling (Tsay et al., 2013). That is, biomarkers 
derived from tumor tissue have been the main focus for es-
tablishing prognostic and predictive markers in LC (Xu-Wel-
liver and Carbone, 2017). In this context, we have recently 
investigated the prognostic potential of the tissue biomarkers 
miR-155 and miR-486-5p for diagnosing LC (Mohamed et al., 
2018). We found that, miR-155 was highly overexpressed, 
yet didn’t correlate with LC stages, while miR-486-5p was ex-
tremely underexpressed and significantly correlated with LC 
stages. Thus, their detection represents an excellent diagnos-
tic/prognostic tool to support more established techniques 
linked to LC spread locally and systemically.

We and others have shown that analysis of VOCs in bio-
fluids by e-nose provided valuable information on metabolic 
processes altered by underlying diseases in the body (Macha-
do et al., 2005; Mazzone et al., 2007; Mohamed et al., 2014; 
2017a,b), which can be particularly promising for the non-in-
vasive LC screening and diagnosis (Dragonieri et al., 2009; 
2017). The present study showed that PCA explained more 
than 95.46, 82.01, and 91.66% of the variance found in e-nose 
signals for blood, breath and urine samples, respectively (Fig. 
1). This means that e-nose was capable of identifying samples 
from each group with no false-positive (controls) or false-neg-
ative (LC patients) results.

Although VOCs detected in blood and urine, it is not 
known which volatile compounds are produced/consumed 
by tumor cells, since they may also be produced/consumed 
by surrounding noncancerous tissue cells or other regions of 
the body (Poulin and Krishnan, 1996; Silva et al., 2011), im-
mune-competent cells (Aksenov et al., 2012), and infectious 
pathogens (Mohamed et al., 2017a). Ideally, one needs to com-
pare e-nose patterns of VOCs in the headspace of cancer cells 
or tissues of a particular patient with those found in blood, 
breath, and/or urine of the same patient (Schmidt and Pod-
more, 2015). Thus, the overlap of blood, breath, and urine 
samples clusters with that of tissue biopsy for LC patients (as 
shown in Fig. 1), means that they have common VOCs char-
acteristic for LC yet, significantly different from controls. In 
line with these findings, Deng et al. (2004) used solid-phase 
microextraction and gas chromatography-mass spectrome-
try (SPME-GC/MS) for investigating LC volatile biomarkers. 
They showed that 23 VOCs found in blood were also present 
in the exhaled breath of LC patients, meaning that there are 
characteristic compounds for identifying the presence of LC. 
Among those 23 VOCs, hexanal and heptanal were detected 
only in blood and breath of LC patients and were not found in 
controls. Guadagni et al. (2011), have shown later on that the 
endogenous urinary aldehydes: hexanal and heptanal can be 
used as biomarkers for identifying LC patients.

Furthermore, Buszewski et al. (2011) compared quanti-
tative measurements of VOCs using SPME-GC/MS technique 
in the headspace of tissue and breath samples of LC patients 
and healthy controls. They detected 27 VOCs in the headspace 
above LC tissues, of these only 22 (mainly alcohols, aldehydes, 
ketones, and aromatic and aliphatic hydrocarbons) were found 
in both LC tissue and breath samples. Higher levels of ethanol, 

acetone, acetonitrile, 1-propanol, 2-propanol, carbon disulfide, 
dimethyl sulfide, 2-butanone, and 2-pentanone were detected 
in tissue and breath samples from LC patients in comparison 
with healthy non-smoking volunteers.

The accuracy of ANN classification of blood, breath, and 
urine samples for LC patients and controls were 95.74, 91.67, 
and 100%, respectively; with an AUC of “1” representing 100% 
sensitivity (i.e. no false negatives) and 100% specificity (i.e. no 
false positives) for urine samples (see Table 2 and Fig. 3). As 
we recently pointed out (Mohamed et al., 2017a), these results 
therefore support the hypothesis of diagnosing LC on basis of 
VOCs signals in urine, compared with pathological evaluation 
of tissue biopsies, and could be used in the clinical setting and 
for large-scale, non-invasive, low-cost mass screening of LC 
patients with great precision.

Recently, urine has attracted increased attention as a bio-
specimen that may be useful for the identification of cancer 
biomarkers. Urine is protein-rich and contains approximate-
ly 3.000 detectable protein species. Moreover, urine proteins 
are stable because the secreted proteins are mature, and urine 
is easy to collect in large volumes in a non-invasive manner 
(Zhang et al., 2015). In addition to its non-invasive nature and 
availability in large volumes, VOCs analysis of urine has an ad-
vantage over other biofluids (i.e. blood and exhaled breath), 
since analytes are concentrated by the kidneys before being ex-
creted from the body. Furthermore, when compared to blood, 
the use of urine usually results in better detection limits as 
matrix effects may interfere with the release of the VOCs into 
the headspace over blood samples (Mills and Walker, 2000).

 
Conclusions

The e-nose was capable of identifying/classifying all studied 
biofluid samples with no false-positive (controls) or false-neg-
ative (LC patients) results. The accuracy of the ANN for iden-
tifying blood, breath, and urine samples were 95.74, 91.67, 
and 100, respectively, as compared to pathological evaluation 
of biopsies. These results therefore support the hypothesis of 
diagnosing LC on basis of VOCs signals in urine and could be 
used in the clinical setting and for large-scale, non-invasive, 
low-cost mass screening of LC patients with great precision.
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