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Abstract
This study aimed to design a neural interface that extracts movement commands from the brain to generate appropriate intra-
spinal stimulation to restore leg movement. This study comprised four steps: (1) Recording electrocorticographic (ECoG) signals and 
corresponding leg movements in different trials. (2) Partial laminectomy to induce spinal cord injury (SCI) and detect motor modules 
in the spinal cord. (3) Delivering appropriate intra-spinal stimulation to the motor modules for restoration of the movements to those 
documented before SCI. (4) Development of a neural interface created by sparse linear regression (SLiR) model to detect movement 
commands transmitted from the brain to the modules. Correlation coefficient (CC) and normalized root mean square (NRMS) error 
was calculated to evaluate the neural interface effectiveness. It was found that by stimulating detected spinal cord modules, joint angle 
evaluated before SCI was not significantly different from that of post-SCI (P > 0.05). Based on results of SLiR model, overall CC and NRMS 
values were 0.63 ± 0.14 and 0.34 ± 0.16 (mean ± SD), respectively. These results indicated that ECoG data contained information about 
intra-spinal stimulations and the developed neural interface could produce intra-spinal stimulation based on ECoG data, for restoration 
of leg movements after SCI.
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Highlights:
•	 Stimulating detected spinal cord modules before SCI was not significantly different.
•	 Stimulating joint angle evaluated before SCI was not significantly different.
•	 CNS commands delivered to the spinal cord, are more complicated than a simple pulse.
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Introduction

Spinal cord injury (SCI) is one of the most common conditions 
of the nervous system which impairs impulse transmission 
from the brain to other organs. It is noteworthy that, SCI not 
only causes paralysis but also has a long-term impact on pa-
tient’s quality of life and mental health (Duggan et al., 2016). 
The most important symptoms observed in subjects with SCI 
are muscular atrophy, joint stiffness, muscle spasms, osteo-
porosis and bedsores (Sezer et al., 2015). Studies done using 
functional magnetic resonance imaging (fMRI), indicated that 
even after SCI, the brain continues to generate electrical sig-
nals in response to an individual’s intention to move (Freund 
et al., 2011). Also, it was indicated that electrophysiologic 
stimulation of the muscles, peripheral nerves, or spinal cord, 
below the level of injury, can lead to muscle activity (Jackson 
and Zimmermann, 2012). Such evidence offers a ray of hope in 

the treatment of SCI if we conceive paralysis as an information 
transfer lesion, where the information sent from the brain via 
the corticospinal tract, does not reach the spinal cord (Filli and 
Schwab, 2012). To restore limb function in individuals with 
SCI, this information transfer lesion must either be repaired 
or bypassed. To date, experimental efforts have focused on de-
velopment of therapeutic approaches to repair the damaged 
spinal cord or prevent further damage after occurrence of the 
initial insult to the spinal cord (Hiebert et al., 2002). Trans-
plantation of stem cells at the site of the injury, introduction 
of tissue-bridging biometrics and peripheral nerve transfers, 
and induction of neurotrophins and cytokines expression via 
viral transduction are examples of such approaches (Alam et 
al., 2016). Despite their great promise in the preclinical set-
ting, these approaches showed limited success in clinical tri-
als. The lack of an appropriate animal model of SCI, along with 
safety concerns associated with some of these therapeutic 
strategies, are cited as reasons for the poor translatability of 
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these treatments in humans (Lobel and Lee, 2014; Rezaee and 
Abdollahi, 2017). Indeed, to date, there has been no report of 
restoration of limb movement following SCI at spinal level us-
ing neural interface technologies by electrical stimulators, to 
create a bypass around the SCI site (Cho et al., 2019; Freund 
et al., 2011).

Recent experiments confirmed efficacy of bypass using 
produced signals based on brain intention, to reanimate or 
mimic motor functions (Sharma et al., 2016). Generally, the 
neural interface inputs are signals extracted from intra-corti-
cal microelectrodes (action potentials), electrocorticography 
(ECoG), or electroencephalography (EEG), and the outputs 
are signals used for direct stimulation of limbs and spinal cord 
(Caldwell et al., 2019). In the current study, we intended to ob-
tain the required data for intra-spinal stimulation, from ECoG 
signals. It is known that the spinal cord of lower vertebrates 
has autonomous capabilities to produce basic coordinated 
patterns of locomotion in the absence of input from higher 
levels of the central nervous system or peripheral feedback 
(Nicolas-Alonso and Gomez-Gil, 2012). In this context, one 
of the recent approaches is controlling the movement at the 
level of the module in the spinal cord. Modular organization 
of spinally generated motor behaviors has been demonstrated 
in several experiments (Roh et al., 2011). These experiments 
documented that the vertebrate motor system produces move-
ments by combining a small number of units of motor out-
put (Ting et al., 2015). As a functional unit of the spinal cord, 
a module generates a particular motor output by inducing an 
explicit pattern (Bizzi et al., 2008). To functionalize paralyz-
ed limbs, a proper pattern should be given to a module. An 
important challenge of restoring paralyzed motor function 
using bypass neural interface and intra-spinal stimulation, 
is generation of appropriate electrical stimulation patterns 
(Grahn et al., 2014). The aim of this study was to design an 
electrode-computer neural interface that extracts movement 
command from the brain to generate appropriate intra-spi-
nal stimulation for restoring the leg movement. In this study, 
first, ECoG signals and corresponding leg movements were 
recorded in different trials. Following, surgical procedure was 
performed to induce SCI and detect motor modules in the spi-
nal cord. Then, the appropriate intra-spinal stimulations were 
delivered to the motor modules for restoring the movements 
(i.e. to exert movements similar to those recorded before SCI 
induction). Finally, a neural interface was developed by sparse 
linear regression (SLiR) model to detect movement commands 
transmitted from the brain to the modules.

 
Materials and methods

Brain electrical activity and leg movement recording
This experimental study was done in the School of Medicine, 
North Khorasan University of Medical Sciences following 
the approval of the university ethics committee (IR.NKUMS.
REC.1397.129). In this study, three male Dutch rabbits 
(weighing 1.63 ± 0.25 kg, 3.8 ± 0.55 months old) were used. All 
procedures were done in accordance with the national guide-
lines for animals’ care and handling. Fig. 1 shows a schematic 
presentation of the experimental setup. First, electrodes were 
implanted in the bregma for ECoG recording. For this purpose, 
the rabbits were anesthetized using intraperitoneal ketamine 
hydrochloride (40 mg/kg; Alfasan, Holland) and xylazine hy-
drochloride (10 mg/kg; Pantex Holland B.V.). A custom-made 
electrode (diameter 0.40 mm) was implanted for signal record-
ing. Two pairs of electrodes were implanted +1.0 cm from the 

bregma and 1 cm lateral to the midline and –2 cm from the 
bregma and 1 cm lateral to the midline. A ground electrode 
was placed under the neck skin. All materials were sealed and 
secured to the skull using dental cement, and the skin was su-
tured. One-week recovery was considered.

Then, animals were treated with chloroform through inha-
lation exposure to slow their fast activity. Animals were main-
tained in a position that allowed them to have free movements 
of the leg only. For evaluation of leg movement, the leg joints 
(i.e. hip, knee and ankle joints) were painted blue. To record 
a  joint position, a digital camera that was located vertically 
above the right leg, was used. Using Microsoft visual studio 
(C#.Net software), real-time pictures (50 frames/second) were 
transferred to the computer and joint angles were identified 
by the colored indicator. In addition to joints angle in differ-
ent movements, corresponding ECoG (sampling frequency 
500  Hz) was recorded by the PowerLab system (ADInstru-
ments, Australia).

Since the animals’ legs were not laid on the ground, three-
leg movements for intact rabbits (i.e. before laminectomy) were 
considered “before-injury movements (BIM)”. The present 
work tried to restore these movements as all animals repeated 
them. BIM consisted of three main movements: Pushing leg to 
the back (the first BIM), Pulling the leg into the abdomen (the 
second BIM) and Pushing the leg forward (the third BIM). The 
leg movements in each BIM and corresponding ECoG signals 
were recorded 30–36 times for each animal. We defined “t” as 
the starting time point for each BIM when the animal moved 
its leg and corresponding ECoG was recorded 0.5 s before “t”.

Surgical procedure
After signal recording, the rabbits were anesthetized using 
ketamine hydrochloride (40 mg/kg) and xylazine hydrochlo-
ride (10 mg/kg). To evaluate the cardiovascular system of the 
animals, electrocardiogram (ECG) signals in lead I were record-
ed by three Ag/AgCl electrodes (PowerLab system, AD Instru-
mentation Co., Australia). Next, a partial laminectomy was 
performed. Then, the spinal cord was exposed and fixed from 
T8 to L4 using two clips. During this experiment, the animal’s 
leg movement did not affect the spinal cord position. For the 
induction of SCI, a complete transection of the spinal cord was 
done at the T7 vertebrae.

Module detection in the spinal cord
A custom-made stimulator equipped with eight isolated chan-
nels was designed to stimulate the spinal cord. This system 
was patented in the Iranian Patent Organization (Patent No. 
IRIPO100866) (Heravi et al., 2019). This device was connected 
to a computer and controlled by Microsoft visual studio C#.Net. 
The stimulation was induced by current pulses. Pulse shapes 
were single-phase and rectangular. Pulse amplitude, frequency 
and pulse width could be adjusted online. In the current study, 
the spinal cord was stimulated by pulses of constant frequen-
cy (50 Hz) and width (0.5 ms). To detect motor modules, the 
posterior horn of the spinal cord was stimulated. Firstly, elec-
trodes were located at the T7 vertebrae, on the right of the 
spinal cord and entered (1 mm) into the spinal cord tissue. At 
this location, a constant current (150 µA) was delivered and 
the joint angles were monitored online. If following the stimu-
lation, no movements were observed, then the electrodes were 
removed and located 2 mm further towards the neighboring 
vertebrae. To determine the best electrode position, this pro-
cess was repeated towards the L4 vertebrae. Electrodes were 
fixed at the most appropriate position and the effect of stimu-
lation amplitude on movement restoration was evaluated.
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The effect of stimulation amplitude on movement is key 
to selecting stimulation patterns for inducing a particular 
movement. So, at each point where the electrode was inserted 
into the spinal cord, the stimulation patterns were obtained 
through a trial-and-error process to generate movements sim-
ilar to the BIMs. The electrode location was considered appro-
priate if the relative error of joint angles was <10% (as calcu-
lated using Eq. 1). The electrodes were fixed to the vertebrae 
by using dental cement, and the skin was sutured. The dia- 
meter of stimulation electrodes was 0.4 mm. The rabbits were 
allowed to recover for one week. Here, three movements de-
fined as “post-stimulation movements (PSMs)” were evaluated 
in laminectomized rabbits following intra-spinal stimulation. 
The three PSMs were: Pushing leg to the back (the first PSM); 
Pulling the leg into the abdomen (the second PSM) and Push-
ing the leg forward (the third PSM) The relative error of joint 
angles was calculated using the Eq. 1:

Fig. 1. Components of experimental setup
(Step 1) Preparation of the animals for the experiments and the signal recording; (Step 2) Surgical procedure for SCI induction and intra-spinal 
stimulation; (Step 3) Detection and activation of modules by intra-spinal stimulations for restoring movements based on trial-error process; 
(Step 4) Processing ECoG and designing the neural interface.
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(Eq. 1)

Where θBIM and θPSM are the joint angles before the injury and 
after stimulation, respectively. The diameter of stimulation 
electrodes was 0.4 mm.

By combining the appropriate intra-spinal stimulation and 
inducing the three detected motor modules, restoration of leg 
movements was performed. Each experiment was repeated 
10 times for each rabbit. Joint angles were recorded in the first 
state (i.e. BIMs) and after induction of a combination of three 
intra-spinal stimulations (i.e. PSMs). Normalized Root Mean 
Square (NRMS) error of tracking was calculated to measure the 
tracking performance as follows (Eq. 2):

 

 (Eq. 2)

For each performance i, y_i^predicted and y_i^actual are the joint ang- 
le before the injury (θBIM) and after stimulation (θPSM),  
max^actuand min^actare the maximum and minimum of θBIM, 
and n is the total time considered in the movement restora-
tion process. The similarity of joint angles in the first state and 
after intra-spinal stimulations was evaluated by calculation of 
the correlation coefficient (CC).

Processing brain electrical activity and designing  
a neural interface
After finding the appropriate intra-spinal stimulation, a neu-
ral interface was developed using a SLiR model to predict in-
tra-spinal stimulations using the ECoG signals. The SLiR effi-
ciently and automatically selected fitting parameters to achieve 
an enhanced overview of performance over that gained from 
other ordinary linear regression models (Chen et al., 2013; Na-
kanishi et al., 2014, 2017). The inputs of the neural interface 
were extracted from the ECoG signal and the outputs were 
amplitude current of intra-spinal stimulations required for re-
storing the PSMs.

In the beginning, preprocessing was performed by a com-
mon average reference on raw ECoG signals. The common av-
erage reference method calculates the mean of two channels 
and subtracts the average value of two channels from the val-
ues of each selected channel. This method increases the signal-
to-noise ratio (Ludwig et al., 2009; McFarland et al., 1997).

a   
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Subsequently, the signal was divided into five frequency 
bands by bidirectional fourth-order Butterworth band-pass 
filters. For each ECoG signal, five frequency bands: δ, θ, α, β, 
and γ that ranged from ~4, 4~8, 8~14, 14~30, and 30~50 Hz 
respectively, were considered. These specific frequency bands 
were considered as they are commonly used in current ECoG 
based brain-computer interface studies (Shin et al., 2012). 
Next, these band-passed signals were digitally rectified and 
smoothed using a second-order low-pass filter. High oscil-
lations of each frequency band were changed into low. The 
cut-off frequency of low pass filter was 2.2 Hz (Nakanishi et 
al., 2013). After that, the sampling frequency signals were re-
duced to 50 Hz based on the sampling frequency intra-spinal 
stimulations. Finally, each smoothed signal xi(t) at time t was 
z-score normalized to produce the final ECoG features zi(t), us-
ing Eq. 3 (Shin et al., 2018):

 

 (Eq. 3)

where, i and j are the electrode channel and the frequency 
band, respectively. μij and σij denote the mean value and the 
standard deviation of xij(t)  over a “T” interval before time t, 
respectively. zij(t) in the “T” interval became the final ECoG 
feature used in intra-spinal stimulation prediction. These 
z-scores calculated from ECoG signals were utilized as train-
ing data to construct a model. We also examined the weights 
of the prediction model to infer which sensorimotor rhythms 
contribute more to the prediction. The amplitude stimulation 
at time t, Y(t), was decoded using the ECoG feature signal zij(t)
over a “T” second interval before time t (Eq. 4):

 

 
(Eq. 4)

where p represents the predicted value of each stimulation 
signal, Δt is 20 ms, ωijk is the weights according to the ECoG 
feature signal zij(t) at electrode channel i, frequency band j, and 
time t – kΔt, and ω0  is the bias. SparseReg MATLAB toolbox 
(Gaines et al., 2018) was used to determine model parameters 
and values of the weights. Validity of the method was exam-
ined by Leave One Out cross-validation. First, based on ECoG 
signals and corresponding intra-spinal stimulation, a mod-
el was developed in all experiments except for the kth trial, 
that was employed as test data. The weight coefficients were 
achieved from this training. Iterations of the sparse linear re-
gression were ended just before over-training. Moreover, an 
intra-spinal stimulation Yp in the kth trial was predicted us-
ing the constructed model. CC and the NRMS error were ob-
tained by comparing Yp and Yact of the kth test trial. Also, the 
above-mentioned training and testing phases were repeatedly 
executed using different trials for k. Finally, the CC and NRMS 
values were averaged across all trials. NRMS error was calcu-
lated based on Eq. 2. For each time i,                   is the predicted
intra-spinal stimulation,             is the actual intra-spinal sti- 
mulation, and                and               are the maximum and min-
imum of actual intra-spinal stimulations, respectively, and n is 
the total time. CC and NRMS were considered prediction per-
formance of neural interface that was calculated by MATLAB 
software version 2011a. We also applied the prediction mod-
el to restore the movements in real-time conditions and the 

performance of the model was then evaluated. The real-time 
data acquisition and processing were performed by MATLAB 
SIMULINK, Real-Time Workshop and Real-Time Windows 
Target. The models were implemented by the S-functions and 
synchronized by Microsoft visual studio.

Statistical analysis
The joint angles in BIMs and PSMs were analyzed by the t-test. 
Also, the ANOVA followed by Tukey’s multiple-comparison 
test, was adopted to analyze the effects of different parame-
ters on the predictive performance of the neural interface.  
All statistical analysis was performed by SPSS version 16.  
A p < 0.05 was considered significant.

 
Results

In this study, three motor modules were stimulated in the spi-
nal cord and three leg movements (i.e. PSM 1, 2 and 3) were 
evaluated following intra-spinal stimulations by measuring 
joint angles.

The results of spinal cord stimulations showed that in the 
first PSM (i.e. backward pushing of the leg), activation loca-
tions varied among the rabbits, but generally they were located 
at L2–L5. The stimulation threshold was 87.5 ± 4.51 µA. The 
second PSM (i.e. pulling the leg towards the abdomen) was 
obtained by stimulation at T13–L1. The stimulation threshold 
was 105.4 ± 8.20 µA. The third PSM (i.e. forward pushing of 
the leg), was induced by an electric current of 89.3 ± 6.23 µA 
delivered at L1–L3. Electrode location varied among the ani-
mals but all were located on the right of the spinal cord and 
at a depth of >1 mm. The effect of stimulation amplitude on 
movements showed that by increasing the pulse amplitude, 
the movement of each joint increased. It is noteworthy that 
a minimum pulse amplitude (i.e. threshold) was required to 
restore each movement. Fig. 2 shows three joint angles in the 
first step and after intra-spinal stimulation.

The t-test analysis of joint angles showed that there were 
no significant differences between joint angles in BIMs and 
PSMs (p < 0.05). Based on our data, using a combination of 
three recognized intra-spinal stimulations, mean (SD) of CC 
and NRMS error of tracking were respectively 0.69 ± 0.127 and 
0.34 ± 0.117 (for rabbit 1,2), 0.67 ± 0.124 and 0.38 ± 0.213 (for 
rabbit 2), 0.66 ± 0.232 and 0.33 ± 0.215 (for rabbit 3). The CC, 
mean (SD) for the 3 rabbits (10 trials each), was 0.69 ± 0.122, 
0.68 ± 0.225 and 0.66 ± 0.204 for the hip, knee, and ankle, 
respectively. The NRMS error of tracking, mean (SD) for the 
3 rabbits (10 trials each), were also calculated 0.36 ± 0.126, 
0.34 ± 0.215, and 0.41 ± 0.135 for the hip, knee, and ankle, 
respectively.

Movement duration average and standard deviations of  
30 trials for the 1st, 2nd and 3rd PSM were 0.46 ± 0.24,  
0.53 ± 0.23 and 0.41 ± 0.19, respectively. It was found that the 
movements of each trial were non-uniform. The effect of the 
different T intervals, each individual ECoG electrode, and each 
sensorimotor rhythm on predictive performance is shown in 
Fig. 3. The effect of the T interval on ECoG processing was as-
sessed using both ECoG channels 1 and 2 and all sensorimo-
tor rhythms. The 2-way ANOVA showed a significantly better 
performance by using 200 ms (for rabbit 3) and 300 ms (for 
rabbits 1, 2) compared to other T intervals [CC: F (3,348) = 
3.074, P = 0.0364, and NRMS: F (3,348) = 3.491, P = 0.0155]. 
The intra-spinal stimulation was predicted using each ECoG 
electrode position individually by the best T interval and all 
sensorimotor rhythms. The 2-way ANOVA showed that per-

a 
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formance using both ECOG channels (i.e. channel 1 and 2) was 
significantly better than others in all animals [CC: F (2,171) 
= 4.290, P = 0.032, and NRMS: F (2,171) = 5.074, P = 0.026]. 
The 2-way ANOVA of each sensorimotor rhythm showed that 
the CC values of the δ and γ bands were significantly higher 
compared to the other bands [F (4,435) = 4.19 P = 0.017]. Also, 

the γ band performance was significantly weaker compared to 
the other bands in all animals [F (4,435) = 3.491, P = 0.0185]. 
Moreover, there were significant differences between all sen-
sorimotor rhythms and each specific rhythm in CC and NRMS 
error [F (5,552) = 3.26 P = 0.0115] and [F (5,552) = 2.16 P = 
0.0169].

 

Fig. 3. The results of predictive performance
(A) CC and NRMS error for different T; (B) CC and NRMS error for application of channel 1, channel 2 and channel 1 and 2 of ECoG; (C) CC and 
NRMS error for different sensorimotor rhythms. Significant differences at p < 0.05 between different parameters are marked with *. CC and 
NRMS error are shown as mean ± standard deviation of 30 experiments (ten for each rabbit).

Fig. 2. Changes in joint angles in the first step and after intra-spinal stimulation
(A) Variations of joint angles. (B), (C) and (D) indicate the 3 joint angles for the BIMs and PSMs in rabbit 1, 2, and 3 respectively. The blue and 
red lines show joint angles variations over time in BIMs and PSMs. In the first PSM, the hip and ankle joint angles increased while the knee 
joint angles decreased. In the second PSM, the knee joint angle increased but the hip and ankle joint angles decreased. In the third PSM, all 
joint angles increased.
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Fig. 4 shows an example of ECoG features extraction and 
the predicted intra-spinal stimulation by SLiR model that gen-
erated PSMs during a trial by rabbit 1. The figure shows that 

the predicted intra-spinal stimulation by SLiR model fit the in-
tra-spinal stimulations required for restoring the PSMs.

 

Fig. 4. Processing the ECoG signals and prediction of intra-spinal stimulation by SLiR model
(A) and (B) show the raw ECoG obtained by PowerLab in 2 channels; (C) and (D) show five frequency bands for 2 channels; (E) illustrates 
corresponding intra-spinal stimulation and (F) presents the predicted intra-spinal stimulation by SLiR model.

Table 1 shows the results of predictive performance. 
The best CC and NRMS error for intra-spinal stimulations 
were 0.70 ± 0.148 and 0.27 ± 0.098 respectively. One-way  
ANOVA was used to identify significant differences in pre-

dictive performances among test subsets. For each rabbit, 
no significant differences in CC [F (9,290) = 0.36, P = 0.89] 
and NRMS [F (9,290) = 0.25, P = 0.96] were observed among 
10 test subsets.

Table 1. Prediction performance of neural interface in 10 test subsets

Test data Rabbit 1
1st = L2, 2nd = T13, 3rd = L1

T = 300 ms

Rabbit 2
1st = L2, 2nd = L1, 3rd = L1

T = 300 ms

Rabbit 3
1st = L3, 2nd = L1, 3rd = L2

T = 200 ms

CC NRMS CC NRMS CC NRMS

  1 0.68 ± 0.181 0.36 ± 0.125 0.62 ± 0.281 0.33 ± 0.127 0.53 ± 0.181 0.40 ± 0.145

  2 0.66 ± 0.176 0.34 ± 0.185 0.66 ± 0.166 0.38 ± 0.096 0.65 ± 0.176 0.35 ± 0.259

  3 0.66 ± 0.159 0.36 ± 0.152 0.69 ± 0.106 0.27 ± 0.095 0.66 ± 0.159 0.29 ± 0.176

  4 0.70 ± 0.148 0.29 ± 0.084 0.67 ± 0.094 0.31 ± 0.169 0.67 ± 0.248 0.28 ± 0.117

  5 0.68 ± 0.124 0.35 ± 0.113 0.60 ± 0.078 0.35 ± 0.094 0.61 ± 0.124 0.38 ± 0.112

  6 0.64 ± 0.093 0.34 ± 0.157 0.67 ± 0.163 0.27 ± 0.098 0.68 ± 0.093 0.29 ± 0.152

  7 0.64 ± 0.282 0.32 ± 0.159 0.61 ± 0.124 0.33 ± 0.126 0.62 ± 0.282 0.37 ± 0.088

  8 0.59 ± 0.174 0.38 ± 0.094 0.66 ± 0.098 0.31 ± 0.088 0.58 ± 0.174 0.40 ± 0.091

  9 0.66 ± 0.079 0.44 ± 0.081 0.67 ± 0.077 0.29 ± 0.096 0.66 ± 0.179 0.38 ± 0.117

10 0.57 ± 0.181 0.32 ± 0.159 0.65 ± 0.081 0.34 ± 0.218 0.59 ± 0.181 0.39 ± 0.210

Mean ± SEM 0.64 ± 0.159 0.35 ± 0.130 0.65 ± 0.126 0.30 ± 0.120 0.62 ± 0.179 0.35 ± 0.146

1st, represents the location of stimulation in the first PSM. 2nd, represents the location of stimulation in the second PSM. 3rd, represents the location 
of stimulation in the third PSM. The bold values show the best results. CC, correlation coefficient and NRMS: normalized root mean square.
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Fig. 5 shows an example of real-time restoration of move-
ments in spinally-injured rabbit. For real-time evaluation of 
the process, the joint angles before SCI and corresponding 
stimulation signals that led to these joint angles, were consid-
ered “actual values of joint angles” and “intra-spinal stimula-
tions”, respectively.

 

Fig. 5. Real-time restoring leg movements in a spinally-injured 
rabbit by the SLiR model
(A) Channel 1 and (B) channel 2 ECoG recording; (C) prediction and 
actual intra-spinal stimulation (D); (E) and (F) respectively show hip, 
knee, and ankle joint angles, in three PSMs, as “actual” and three 
real-time restored joint angles as “restored”.

 

The performance of real-time restoration of movements 
ranged from 0.41 to 0.60 and from 0.25 to 0.48 based on CC 
and NRMS, respectively. These results clearly showed that the 
model could predict intra-spinal stimulation based on ECoG 
and the PSMs were restored by predicted intra-spinal stimula-
tion with appropriate performance.

 
Discussion

In this study, an ECoG-based model was developed for induc-
tion of intra-spinal stimulation prediction for restoring mon-
itored movements. The results of module detection showed 

that by stimulating detected spinal cord modules, joint angles 
evaluated in BIMs were not significantly different from those 
of PSMs (P > 0.05). So, electrical stimulation of the spinal cord 
modules was found helpful in restoration of leg movements in 
laminectomized rabbits. The overall CC and NRMS calculated 
for joint angle were respectively 0.67 ± 0.21 and 0.34 ± 0.11. It 
indicated acceptable tracking performance in leg movement’s 
restoration. The results of application of the present neural in-
terface showed that the overall (mean ± SEM of 10 trials for 
each of the three rabbits) CC and NRMS values were 0.63 ± 
0.14 and 0.34 ± 0.16, respectively. These results indicated that 
ECoG data contained information about intra-spinal stim-
ulations and the neural interface could predict intra-spinal 
stimulation based on ECoG for restoring PSMs. The results of 
real-time restoration of movements using SLiR model showed 
overall CC and NRMS error tracking of 0.51 ± 0.09 and 0.46 ± 
0.09, respectively. The CC and NRMS values showed weaker 
performance compared to the non-real-time process, but these 
values were achieved based on real-time prediction and showed 
approximately appropriate results. The results of spinal cord 
electrical stimulation showed that stimulation of upper verte-
brae, T13 to L1, leads to joints closing while stimulation of the 
spinal circuitry of the next vertebrae leads to joints opening 
which is in line with results reported by previous studies (Aas-
di and Erfanian Omidvar, 2013; Righetti and Ijspeert, 2006). 
In the present work, the range of each movement increased 
with increasing stimulation amplitude.

The results of neural interface performance using one or 
two-channel ECoG analysis showed that predictive perfor-
mance was improved by ECoG processing of two channels. 
This indicates that, using higher numbers of ECoG channels 
might improve predictive results. In this study, the results 
of performance for frequency band showed that the γ and 
δ bands significantly affected CC compared to the other bands 
while on NRMS error, only γ bands had significant effect. In 
ECoG-based BMIs studies, the γ rhythm has been widely used 
(Pistohl et al., 2008; Yanagisawa et al., 2012). Several articles 
also reported that γ rhythm was useful for 3D hand trajec-
tory (Shimoda et al., 2012) and EMG prediction (Shin et al., 
2012) in monkeys. Also, some reports indicated that the δ and 
γ bands were suitable for decoding arm motion (Chao et al., 
2010), arm movement trajectories (Pistohl et al., 2008), grasp 
force profile (Chen et al., 2013), joint angle and muscle activity 
(Shin et al., 2018) based on the ECoG. Our results are in good 
agreement with the previous reports (Chao et al., 2010; Chen 
et al., 2013; Shin et al., 2012, 2018). Although we identified 
the ECoG frequency bands with the highest performance, the 
best overall performance was achieved when all sensorimotor 
rhythms were considered. This might indicate that all sensori-
motor rhythms of ECoG encode modules activity in the spinal 
cord and therefore, they are required, at least to some degree, 
to predict such activities.

Body weight is an important issue in movement restoring 
studies. Thus, body weight should be considered if there is 
a gait pattern for evaluation of intensity rate and pulse stimu-
lation variables. Several kinds of modules depending on mus-
cle pattern and/or force pattern changes were defined in the 
literature (Bizzi et al., 2008; Tresch et al., 2002). Here, we de-
fined the modules based on the changes in recorded joint angle 
as we wanted to restore BIMs and evaluate these movements 
based on joint angles. To activate each module, we delivered 
electrical stimulation to the spinal cord module. However, the 
trial-and-error method is a time-consuming inefficient ap-
proach for generating stimulation patterns.
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Conclusions

The results of present study indicated which intra-spinal stim-
ulations and the developed neural interface could produce in-
tra-spinal stimulation based on ECoG data, for restoration of 
leg movements after SCI.

It should be noted that future studies that may employ the 
present approach for restoring movements should consider 
body weight. Since electromyography (EMG) analysis of leg 
movements could improve the results, it is recommended to 
be considered in future studies.
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