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Abstract
Intertrochanteric (IT) femur fractures are the most common fractures in elderly people, and they lead to significant morbidity, mortality, 
and reduced quality of life. The different types of fractures require a careful definition to ensure accurate surgical planning and reduce 
the operation time, healing time, and number of surgical failures. In this study, a deep learning-based automatic multi-class IT fracture 
detection model was developed using computed tomography (CT) images and based on the AO/OTA classification method. The original CT 
image was resized and rearranged according to the fracture location and an unsharp masking filter was applied. A multi-class classification 
of nine different types of IT fractures and no fracture was performed using the faster regional-convolutional neural network (R-CNN). 
Bayesian optimization was also implemented to determine the optimal hyperparameter values for the faster R-CNN algorithm. In our 
proposed model, IT fractures classified into two classes showed an average accuracy of 0.97 ± 0.02, which was 0.90 ± 0.02 when classified 
into ten classes. Additionally, the detected region of interest from our proposed model showed minimum root mean square error and 
intersection over union values of 16.34 ± 47.01 pixels and 0.87 ± 0.12, respectively. In the future, our proposed automatic multi-class IT 
femur fracture detection model could allow clinicians to identify the fracture region and diagnose different types of femur fractures faster 
and more accurately. This will increase the probability of correct surgical treatment and minimize postoperative complications.

Keywords: AO/OTA classification method; Computer-aided Diagnostic Detection; Deep learning; Intertrochanteric femur fracture; 
Optimization

Highlights:
•	 A system to automatically detect femur fracture types and their regions of interest was developed.
•	 Our proposed intertrochanteric femur fracture detection model using deep faster R-CNN-BO allows detection of ten different types 

of femur fractures.
•	 Similar systems can be applied to detect possible fracture cases to assist clinicians’ interpretations.
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Introduction

Intertrochanteric (IT) femur fractures are some of the most 
common fractures in the elderly and are usually due to falls. 
The incidence rate of IT fractures grows continuously, and it is 
expected to double by 2040 as the elderly population increas-
es (Braun et al., 2018; Faisal and Nistane, 2016). As IT frac-
tures often lead to significant morbidity, mortality, or reduced 
quality of life (Boone et al., 2014), it is important to provide 
an operative treatment that allows the restoration of efficient 
mobility while minimizing the risk of complications (Segal et 
al., 2018). IT femur fractures can be determined by medical 

imaging techniques such as X-rays or computed tomography 
(CT), and the type of operation or fixation device must be se-
lected based on the characteristics of the fracture. Three pri-
mary factors should be considered when classifying the type 
of fractures: stability evaluation, reduction, and lateral or pos- 
teromedial wall integrity (Cho et al., 2018). In particular, sta-
ble fractures require treatment with sliding hip screw surgery, 
unlike unstable fractures, which show reverse obliquity frac-
ture line characteristics and no lateral buttress intactness, 
making this treatment unsuitable for them. Instead, this type 
of fracture can be treated using an intramedullary nail to pro-
vide the buttress (Mears and Kates, 2015). Therefore, good IT 
fracture classification systems are required for accurate surgi-
cal planning.
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In general, there are two main clinical classification meth-
ods that determine the types of IT fractures based on the phys-
iological differences of the causes of fractures. Among several 
IT fracture classification systems, such as AO/OTA or Evans 
modified by Jensen (EVJE), the AO classification system is the 
most reproducible and reliable (Fung et al., 2007). In this sys-
tem, A1 refers to a stable two-part fracture, A2 refers to an un-
stable fracture with three or more fragments, and A3 refers to 
the most unstable fracture with transverse or reverse obliquity 
fractures. However, even the AO classification system shows 
high inter- and intra-expert variability, especially when the 
fracture is examined by less experienced physicians (Fung et 
al., 2007; Jin et al., 2005). Additionally, human classification 
of these fractures is extremely time-consuming because of the 
multiple image readings (Wu et al., 2012). These problems can 
lead to surgical process failures, longer operation times, and 
a more difficult healing process. An automatic fracture clas-
sification system is important given the need for variability 
reduction, high classification accuracy, and quick detection. 
With the help of such a system, physicians can achieve better 
interpretations and reduce the interpretation times.

Several studies present classifications of femur fractures 
or detection of fracture lines using various methods, such as 
segmentation based on statistical shape models or traditional 
machine learning algorithms such as random forest (Erickson 
et al., 2017). The traditional automatic detection methods of 
previous studies are limited by the requirements of manual la-
beling of data, determination of the optimal threshold for seg-
mentation, feature extraction process, etc. However, the appli-
cation of deep learning methods such as convolutional neural 
networks (CNNs), which is now possible owing to the enhance-
ment of hardware and algorithms, has led to improvements in 
terms of reduction of pre-processing steps with no manual fea-
ture extraction (Erickson et al., 2017; Ren et al., 2015; Shen et 
al., 2017). Bayram and Çakıroğlu (2016) developed automatic 
diaphyseal femur fracture classification methods for the first 
time; to improve their performance, a pre-processing method, 
called the support vector machine (SVM)-based sensitive noise 
remover, was applied along with feature extraction methods 
known as bone completeness indicators and fractured region 
mappings. Fractures were classified into nine classes based 
on the AO/OTA classification system using a multi-class SVM 
classifier with an accuracy of 89.87%. However, the disadvan-
tage of this method is the use of X-ray imaging, which requires 
image enhancement and noise reduction, thus increasing the 
classification time cost.

To overcome the abovementioned limitation, deep learn-
ing has been actively applied to medical image analysis because 
of its ability to discover high correlation relationships within 
large medical data sets by automatically learning significant 
low- to high-level features (Kim and MacKinnon, 2018). As 
discussed above, in previous studies, machine learning allowed 
the determination of object locations in an image by drawing 
a bounding box or detecting single or multiple objects of dif-
ferent specific classes (Ker et al., 2017). From a clinical per-
spective, different tasks using deep learning algorithms are 
not crucial; it would be preferable to allow the detection and 
localization of objects in a single workflow (Voulodimos et al., 
2018). Kazi et al. (2017) developed an automatic femur frac-
ture detection model using an unsupervised spatial transform-
er network (USTN) with a CNN algorithm to classify six femur 
fracture types along with the fracture regions. However, their 
results showed that when the fracture types increased for clas-
sification, the object detection accuracy decreased from 84% to 
82% with a smaller specificity value. Additionally, the localiza-

tion performance was relatively poor, with a mean average pre-
cision (MAP) of 0.47. This may be owing to the application of 
an unsupervised ROI (region of interest) detection algorithm; 
the optimization of such a model is highly challenging.

Therefore, based on our knowledge, we have pioneered the 
development of an automatic femur fracture detection model 
that can classify a maximum of nine different fracture types 
and detect the femur location using CT imaging with a deep 
faster R-CNN model. The accuracy of the classification results 
and detection was evaluated. In the future, the developed 
model is expected to be applied by physicians and residents 
to determine the type of fracture and location in a single step. 
This will benefit the reproducibility of the AO/OTA classifi-
cation method and increase the chances of accurate surgical 
treatment choices to allow early patient mobilization.

 
Materials and methods

Subjects
A total of 85 patients, 55 males and 30 females, were recruited 
from the Medical School of Chonbuk National University from 
2016 to 2018. They were admitted to the hospital with IT frac-
tures. The patients were excluded from the study if they had 
a history of surgery near the femur region. The present study 
received approval from the institutional review board (IRB 
No.CUH2018-01-228) of Chonbuk Hospital, and informed 
written consent was obtained from all patients.

Materials and fracture assessment
In this research, a total of 3343 CT images of size 512 × 512 × 3 
pixels were collected from patients who had IT fractures. All CT 
images were obtained in digital imaging and communications 
in medicine (DICOM) format for the purpose of classification.

The IT-fracture CT images were reviewed independently 
by orthopedic surgeons, who were asked to classify and locate 
the regions of interest for the femur fracture for each image 
independently according to the AO/OTA classification (Sinno 
et al., 2010). The AO/OTA classification is primarily divided 
into three groups of fracture types, and then into nine classes 
of subgroups based on increasing fracture severity, as shown 
in Fig. 1.

Data pre-processing
The CT images collected from the hospital consisted only of fe-
mur fracture images; none of them were obtained directly from 
patients, as in Fig. 2A. Therefore, the dataset was increased by 
duplicating the original images with no fracture and fracture 
images. As shown in Fig. 2B, the original IT femur fracture CT 
image is resized to 224 × 224 pixels to reduce the computa-
tion time by considering general hardware specification and to 
fit the CNN architecture (Pranata et al., 2019; Urakawa et al., 
2019; Toderici et al., 2017). To make the femur fracture line 
clear, an unsharp masking filter was applied, which allowed 
sharpening of the image; it functions by subtracting a blurred 
version of the original image from the original image to detect 
the edges. The contrast was increased along the edges using 
this mask. A radius value of two and contrast level of 20% was 
applied (Fig. 2B, left bottom corner).

Next, the resized CT image was marked based on the frac-
ture location by dividing it into three regions (left side, middle, 
and right side). For the fracture within the left side region, the 
image was cropped from pixel 1 to 112 on the x-axis, and the 
rest of the image was left in black, as shown in the right upper 
corner of Fig. 2B. The image was cropped from pixel 56 to 168 
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Fig. 1. AO/OTA classification method with the types of femur 
fractures that were used for classification

 
Fig. 2. Original CT image of a femur fracture. (A) The fracture line can be observed within the ROI (red box), which was manually annotated by 
experts. (B) The CT images were resized and cropped into left- and right-side images to collect normal IT images. The resized image was divided 
into three regions depending on the fracture site location, and the final reconstructed image is shown in the right bottom corner.

on the x-axis for the middle region fractures and from pixel 
112 to 224 on the x-axis for images showing fractures on the 
right-hand region. This cropped image was used to train the 
dataset in our proposed model.

For each image that was manually labeled with the class 
of the femur fracture along with the ROI of the fracture, we 
relabeled the IT femur fracture CT image dataset by dividing 
it into five groups based on the manual classification results: 
(i) two classes: no fracture and fracture; (ii) three classes: no 
fracture, A1.1 to A2.1, and A2.2 to A3.3; (iii) four classes: 
no fracture, A1, A2, and A3; (iv) seven classes: no fracture, 
each type of A1.1 to A1.3, each type of A2.1 to A2.3, and A3;  
(v) ten classes: no fracture, each type of A1.1 to A1.3, each type 
of A2.1 to A2.3, and each type of A3.1 to A3.3 (Crijns et al., 
2018).

Our proposed femur fracture classification and ROI 
detection model
As mentioned above, the deep faster R-CNN deep learning 
approach was applied to determine the nine different fracture 
types and the femur location using a CT image and in a single 
process, unlike the previous general computer-aided diagnosis 
(CAD) techniques, as shown in Fig. 3A and B (Ren et al., 2015). 
It calculates the feature map of the input image and automat-
ically obtains the features of each ROI using a region proposal 
network (RPN). The RPN uses the feature map of the last CNN 
convolution layer to determine the output ROI. Detecting the 
ROI requires an anchor, which is rectangular with various scale 
and aspect ratios, to generate different types of ROIs in the 
feature map. For each ROI, the object score and its bounding 
box are calculated and sent to the classification and bounding 
box regression layer. From these two layers, the class of the 
detected object is determined. Ren et al. (2015) describe the 
faster R-CNN in more detail.
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Fig. 3. Schematic diagrams of the previous general and the proposed femur fracture classification methods. (A) General CAD classification 
methods consisting of pre-processing, region selection, and annotation. (B) Deep learning algorithm showing simple CAD classification process. 
(C) VGG-16 architecture or layer for our proposed faster R-CNN-BO model.

To train the faster R-CNN we implemented the pretrained 
VGG-16 architecture from deep learning toolbox of Math-
Works (R2018a, MathWorks, USA). In this research, the num-
ber of layers is same as the pretrained VGG-16 model. The 
changes of pretrained VGG16 model for our research is the 
layer of 39 to 41 such as the weight and bias value is replaced 
by optimized weight and bias values in fully connected layer 
or the number of classes for classification layer. The last max 
pooling layer is replaced by ROI max pooling layer with output 
size of 7 by 7. The more details such as size of stride or padding 
values of the VGG16 net architecture that was implemented 
are depicted in Fig. 3C (Zhang et al., 2016).

Previous studies have examined the influence of the clas-
sifier hyperparameters on performance; the particular hyper-
parameter values should be modified or determined to prevent 
a decrease in the performance of the model. As presented in 
Table 1, a total of ten hyperparameters are modified, and seven 
of them (which are shaded in gray in the table) are selected as 
optimized hyperparameters. The range of the selected hyper-
parameters of the faster R-CNN is also described.

Table 1. Hyperparameters and their details used for faster R-CNN

Hyperparameter Details

Fixed

Solver optimizer
Stochastic gradient descent 

with momentum

Mini batch size 32

Maximum epoch 40

Variable

Initial learning rate 0.0001–0.1

Momentum 0.8–0.95

L2 Regularization 0.0001–0.01

Negative overlap range 0.1–0.4

Positive overlap range 0.4–0.9

Weights 0.0001–0.01

Box pyramid scale 1.0–1.9
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In this study, the sequential model-based optimization, 
also known as the Bayesian optimization (BO) technique, was 
applied to fine-tune the hyperparameters of the faster R-CNN 
classifier. The pseudocode for the BO is presented in Table 2. 
The maximum number of objective function evaluations was 
set to 30 (Shahriari et al., 2015).

Algorithm 1 Bayesian optimization 

1: for t = 1,2, … do 

2:    select new ���� by optimizing acquisition function α 

 ���� � � ��������
���� ��� 

3:    query objective function to obtain ���� 

4:    augment data ���� � � ���� ������ ������ 
5:    update statistical model 

6:  end for 

 

Table 2. BO pseudocode for optimizing hyperparameters of faster 
R-CNN

Previous research implementations
To compare the performance of our automatic femur fracture 
model with that of other techniques, we implemented the 
method reported in the previous research by Kazi et al. (2017). 
We used our femur fracture CT image rather than the X-ray 
images of size 2500 × 2048 pixels that Kim and MacKinnon 
(2018) applied to classify femur fractures into a maximum of 
six subgroups (A1 to B3). Histogram normalization was ap-
plied during image pre-processing. In this research, we used 
three different approaches, the lower bound model (LBM), up-
per bound model (UPM), and USTN. MatConvNet was used to 
train the network with a learning rate from 10–5 to 10–4 for a 
maximum of 80 epoch, momentum with 0.9, and batch size 
of 10; backpropagation and stochastic gradient descent were 
used (Vedaldi and Lenc, 2015).

Statistical methods
To evaluate the performance of our developed classifiers, 
5-fold cross validation was applied. The total number of used 
datasets was 3343. When using the 5-fold cross validation 
technique, the datasets were randomly divided into 2675 (80% 
of a total of 3343) for training and 668 (the remaining 20% of 
a total of 3343) for testing. From the result, we sorted out the 
validation group, which showed median classification accura-
cy, and carried out the process mentioned above five times to 
adjust for possible deviations in the results. The average clas-
sification accuracy, sensitivity (the number of true positives 
(TPs) over the number of TPs plus the number of false nega-
tives (FNs)), and positive predictive value (PPV) (the number 
of TPs over the number of TPs plus the false positives (FPs)) 
were calculated from a confusion matrix. The intersection over 
union (IoU), which represents how well the area of the ground 
truth bounding box (Agt) and that of the predicted bound box 
(Ap) overlap, was subsequently calculated.

 

Additionally, the root mean square error (RMSE) for the 
detected and original ROIs of diagonal length was calculated 
to determine the difference, where yi is the true value and pi is 
the predicted value.

����� � ��1����� �������
�

�����
 

The obtained results were compared and analyzed through 
ANOVA using Tukey’s post hoc analysis to verify the differenc-
es. The significance level was set to p < 0.05, and all statistical 
analyses were conducted using PASW Statistics 18 (v. 18, SPSS 
Inc, Chicago, IL, USA).

All the data processing was performed using MATLAB pro-
grams (R2018a, MathWorks, USA). The networks were trained 
and tested on a computer system running Windows with an 
Intel(R) Core(TM) i7-5930K @ 3.50 GHz processor and an 8 GB 
NVIDIA GeForce GTX 1080 graphics card.

 
Results

Classification accuracy of femur fracture from CT 
images using faster R-CNN-BO vs previous research 
method
In this research, we classified nine different types of femur 
fractures based on the AO/OTA classification method along 
with no femur fracture. Table 3 shows that, as compared to 
the accuracy when the number of femur fracture classification 
types increases, binary classification (no fracture vs fracture) 
shows the highest accuracy in our proposed model and in the 
other three methods.

As shown in Fig. 4, our proposed model had a significantly 
higher average classification accuracy of 0.97 ± 0.02 and 0.90 ± 
0.02 when dividing the femur fractures into two and ten class-
es, respectively, as compared to 0.89 ± 0.02 and 0.78 ± 0.01 in 
the USTN model (p < 0.01), respectively.

Sensitivity and positive predictive values of proposed 
model when classifying different types of femur 
fractures
As presented in Table 4, the sensitivity and PPV of our pro-
posed model were described using a confusion matrix. The 
overall average sensitivity was higher than the PPV for all five 
different classification results, indicating that the number 
of FPs was higher. The sensitivity and PPV for the two-class 
classification results ranged between 0.99 and 0.94. For the 
ten-class classification, the lowest sensitivity was 0.75, for the 
B2.2 fracture type, and the lowest PPV was 0.65, for the A1.1 
fracture type.

The result of ROI localization for fracture detection
Our proposed femur fraction ROI detection model was eval-
uated by measuring IoU, as presented in Table 5. The average 
IoU of the classification of the femur fractures into two and 
ten classes showed minimum values of 0.88 ± 0.13 and 0.87 
± 0.12, respectively. Additionally, the diagonal length RMSE 
of the detected and ground truth of the ROI was calculated, 
and the three- and ten-class classification resulted in the low-
est average RMSE value of 16.34 ± 47.01 and the highest av-
erage RMSE value of 31.48 ± 54.83, respectively. As shown in 
Fig. 5A, the higher IoU was achieved when there was sufficient 
overlap between the detected and ground truth of the fracture 
region.

Yoon et al. / J Appl Biomed
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Table 3. Comparison of classification accuracy for different types of femur fracture detection between previous studies and our proposed 
model

LBM UBM USTN
Our proposed model

(Ref 19) (rep) (Ref 19) (rep) (Ref 19) (rep)

2 class 0.81 0.90 ± 0.01 0.88 0.92 ± 0.01 0.84 0.89 ± 0.02 0.97 ± 0.02 (0.01)

3 class 0.83 0.89 ± 0.01 0.86 0.90 ± 0.01 0.83 0.85 ± 0.01 0.95 ± 0.02 (0.01)

4 class – 0.85 ± 0.01 – 0.88 ± 0.00 – 0.83 ± 0.01 0.94 ± 0.01 (0.01)

7 class 0.86 0.83 ± 0.02 0.89 0.85 ± 0.01 0.82 0.81 ± 0.02 0.92 ± 0.01 (0.01)

10 class – 0.80 ± 0.01 – 0.82 ± 0.00 – 0.78 ± 0.01 0.90 ± 0.02 (0.01)

 
Fig. 4. Comparison of multi-class classification accuracy of femur fracture between previous research and our proposed model. LBM, UBM, and 
USTN represent the lower boundary model, upper boundary model, and unsupervised spatial transformer network, respectively.

 
Discussion

This study aimed to develop an automatic multi-class IT femur 
fracture detection model using deep learning to classify the 
type and location of a fracture in a single flow. Based on the an-
notated expert data, we modified the CT fracture images into 
three regions to train data for the deep faster R-CNN model. 
It could detect nine different types of femur fracture classes 
and no-fracture regions with relatively high accuracy and low 
RMSE and IoU.

Our proposed model showed slight decrease in accuracy, 
from 97% during binary classification to 90% during classi-
fication into ten subgroups. However, the previous research 
performed by Kazi et al. (2017) showed increased accuracy 
when the number of classes increased in the LBM model. This 
result may be due to the fact that the number of datasets was 
normalized to be identical for each class, indicating a higher 
number of training datasets, such as in the A2 class. Addition-

ally, they applied the USTN model, which is a CNN containing 
one or several spatial transformer modules. This allowed the 
network to be spatially invariant for input images, unlike in 
the max pooling layer used in CNN. This spatial transformer 
network allowed the determination of an object’s class and 
location in an unsupervised manner (Jaderberg et al., 2015). 
The significant PPV decrease was also determined based on the 
number of classes to classify the average PPV values from 96% 
to 79%. Additionally, the results showed that the PPV values 
for each of the five different models of our proposed model 
were lower than the sensitivity values. This could indicate that 
more FPs exist than for every TP than FNs.

Some previous studies have utilized CAD with medical im-
aging to detect or classify diseases such as fractures (Kim and 
MacKinnon, 2018; Yates et al., 2018). Most of them used X-ray 
images instead of CT images as an input data. X-ray images 
are single plane, mainly anterior/posterior or medial/lateral 
views; however, the complexity of bone morphology, especial-
ly in the posterolateral area and fracture lines, is obstructed 

Yoon et al. / J Appl Biomed
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Table 4. Confusion matrix for the results of classification of the IT femur fracture into two to ten classes. The green and orange in the table 
represent maximum and minimum values for positive predictive values and sensitivity, respectively

Yoon et al. / J Appl Biomed

  Positive predictive values 

Sensitivity 

2 class 

369.4 4.9 0.99 
 

16.3 278.2 0.94 

0.96 0.98 

3 class 

372.6 2.4 1.2 0.99 

 11.6 159.4 2.6 0.92 

5.2 8.1 105.7 0.89 

0.96 0.94 0.97 

4 class 

371.2 2.1 0.9 0.4 0.99 

 
12.0 127.5 2.6 0.2 0.90 

7.8 7.8 84.6 0.6 0.84 

4.1 1.0 0.5 45.6 0.89 

0.94 0.92 0.95 0.97 

7 class 

422.4 0.3 2.0 0.0 0.2 0.4 0.6 0.99 

 

5.7 22.8 1.8 0.0 0.0 0.6 0.0 0.74 

9.1 0.0 79.2 0.0 0.6 0.0 0.0 0.89 

4.2 0.0 0.4 16.8 0.0 0.6 0.0 0.76 

5.1 0.2 1.4 0.2 26.6 0.0 0.0 0.79 

5.7 0.0 0.2 0.0 0.6 35.6 0.4 0.84 

4.9 0.0 0.0 1.0 0.6 1.2 17.8 0.70 

0.92 0.98 0.93 0.93 0.93 0.93 0.95 
 

10 class 

362.4 1.3 4.0 1.0 0.5 0.4 0.5 0.7 0.5 0.2 0.98 

5.2 20.3 4.2 0.0 0.6 0.4 0.0 0.0 0.4 0.0 0.65 

13.6 1.2 70.4 0.6 1.2 0.0 0.2 0.0 0.0 0.4 0.80 

0.2 0.2 0.4 18.6 1.2 1.8 0.4 0.2 0.1 0.2 0.80 

1.3 1.2 2.8 0.6 27.5 0.4 0.2 0.0 0.0 0.2 0.80 

0.7 0.2 3.2 1.0 2.6 33.3 0.6 0.1 0.4 0.2 0.79 

1.6 0.5 0.6 1.0 1.8 2.0 19.8 0.0 0.1 0.0 0.72 

1.7 0.0 0.2 0.0 0.2 0.0 0.0 6.8 0.4 0.4 0.70 

0.6 0.2 1.2 0.2 1.0 0.2 0.4 0.0 25.4 0.2 0.86 

0.7 0.2 1.0 0.0 0.0 0.0 0.0 0.2 0.8 10.3 0.78

0.93 0.80 0.80 0.81 0.75 0.86 0.90 0.85 0.90 0.85 
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Fig. 5. Schematic diagrams of the previous and proposed femur 
fracture classification methods. (A) represents a well overlapped 
detected and expected ROI that shows relatively high IoU,  
(B) represents a less overlapped detected and expected ROI that 
shows relatively low IoU and (C) represents low IoU along with high 
RMSE value.

Table 5. IoU and RMSE of ROI diagonal length for femur fracture 
between detected ROI area and expected ROI area

Our proposed detection model (deep faster R-CNN-BO)

RMSE of diagonal length of ROI  
(avg ± std, pixel) 

IoU  
(avg ± std)

2 class 23.02 ± 39.17 0.88 ± 0.13

3 class 16.34 ± 47.01 0.91 ± 0.10

4 class 16.84 ± 46.34 0.89 ± 0.08

7 class 23.18 ± 66.58 0.88 ± 0.06

10 class 31.48 ± 54.83 0.87 ± 0.12

on X-ray images, resulting in poor readability on the sagittal 
plane when using them to evaluate the class of a fracture (Isi-
da et al., 2015). For acute trauma in an IT femur fracture, CT 
scanning image is required to detect intra-articular fragments 
and surface fractures to detect the fracture pattern for surgical 
planning. The clinical and radiological results showed that the 
use of CT images is recommended to evaluate an unstable IT 
fracture. Detection of the correct class, especially for unstable 
type 2 IT fractures, will decrease the operation time and the 
risk of surgical failure (Han et al., 2010).

In this research, the deep faster R-CNN was applied for 
femur fracture detection. This is a two-stage detection mod-
el that uses an RPN instead of selection search methods. This 
method was faster than previous models such as R-CNN or 
fast R-CNN (Zhang et al., 2016); however, two-stage R-CNN 
models have identical disadvantages such as a complex pipe-
line, lack of real time feasibility, and difficulty in optimizing 
each hyperparameter. In this search, we applied the Bayesian 
optimization model to overcome the abovementioned limita-
tion. In the future, a one-stage R-CNN model such as YOLO 
might be applicable to increase the object detection speed if 
the accuracy or MAP shows no difference compared to that of 
our model (Redmon et al., 2016). Additionally, in this study, 
the CNN architecture of VGG-16 was applied as the base fea-
ture extractor, which is the main detection framework applied 
in object detection models. While it has the advantage of ac-
curate classification performance, it is somewhat complex be-
cause the convolution layers of VGG-16 calculate 30.69 billion 
floating point operations for a single image of size 224 × 224 
pixels (Wu et al., 2017). One of the main aims of object de-
tection models is improving the speed of object detection. Yu 
et al. (2016) reported that the VGG-16 model showed higher 
performance as compared to Alexnet; however, it has a twofold 
larger model size. Recent studies have applied other architec-
tures to detect or classify fractures from medical images, such 
as the Squeezenet and Resnet, which may increase the perfor-
mance. However, for instance, with Googlenet in multi box, 
the number of parameters used for the output layer is two-
fold as compared to that in VGG-16; this might not be suita-
ble when the number of images used for training is small, as 
it might increase the overfitting. Therefore, the shared CNN 
architecture for deep faster R-CNN must be considered in the 
future to secure performance while considering various envi-
ronments, such as computational load or number of images. 
Lastly, the total number of CT of IT femur fractures collected 
from patients was 3343, which may seem to be quite small. 
Several previous studies have increased the number of fracture 
images for training purposes by applying data augmentation 
techniques. For instance, Guan et al. (2020) applied data aug-
mentation techniques such as horizontal flipping and random 
rotation of original X-ray images. Therefore, in the future, data 
augmentation should be considered to increase the number of 
images for training.

 
Conclusions

In our study, the type of IT femur fracture and its ROI were 
automatically determined from a CT image in a single step 
based on the AO/OTA classification method using the deep 
faster R-CNN-BO algorithm. It showed higher performance 
than that obtained in previous studies when classifying and 
detecting the ROI. In conclusion, our developed automatic fe-
mur fracture detection model can reduce the diagnostic differ-
ences owing to surgeons’ experience levels and provide deeper 
insight when selecting or planning the treatment of a femur 
fracture.
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