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Abstract
Background: Atherosclerosis leads to coronary artery disease (CAD) and myocardial infarction (MI), a major cause of morbidity and 
mortality worldwide. The computer-aided prognosis of atherosclerotic events with the electrocardiogram (ECG) derived heart rate 
variability (HRV) can be a robust method in the prognosis of atherosclerosis events.
Methods: A total of 70 male subjects aged 55 ± 5 years participated in the study. The lead-II ECG was recorded and sampled at 200 Hz. The 
tachogram was obtained from the ECG signal and used to extract twenty-five HRV features. The one-way Analysis of variance (ANOVA) 
test was performed to find the significant differences between the CAD, MI, and control subjects. Features were used in the training and 
testing of a two-class artificial neural network (ANN) and support vector machine (SVM).
Results: The obtained results revealed depressed HRV under atherosclerosis. Accuracy of 100% was obtained in classifying CAD and MI 
subjects from the controls using ANN. Accuracy was 99.6% with SVM, and in the classification of CAD from MI subjects using SVM and 
ANN, 99.3% and 99.0% accuracy was obtained respectively.
Conclusions: Depressed HRV has been suggested to be a marker in the identification of atherosclerotic events. The good accuracy observed 
in classification between control, CAD, and MI subjects, revealed it to be a non-invasive cost-effective approach in the prognosis of 
atherosclerotic events.

Keywords: Artificial neural network; Atherosclerosis; Coronary artery disease; Heart rate variability; Myocardial infarction;  
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Highlights:
•	 The study revealed reduced heart rate variability (HRV) in CAD and MI patients in comparison to normal subjects.
•	 The application of a two-class ANN classifier demonstrated 100% classification accuracy in depicting CAD and MI subjects in 

comparison to control subjects.

* Corresponding author: Yogender Aggarwal, Birla Institute of Technology, Department of Bioengineering and Biotechnology, Mesra, 
Ranchi, Jharkhand, India; e-mail: yaggarwal@bitmesra.ac.in
http://doi.org/10.32725/jab.2022.008
Submitted: 2021-07-20 • Accepted: 2022-06-16 • Prepublished online: 2022-06-21
J Appl Biomed 20/2: 70–79 • EISSN 1214-0287 • ISSN 1214-021X
© 2022 The Authors. Published by University of South Bohemia in České Budějovice, Faculty of Health and Social Sciences.  
This is an open access article under the CC BY-NC-ND license.

Original research article

 
Introduction

Cardiovascular diseases (CVDs) cause morbidity and mortality 
worldwide. The deposition of fatty-streak on the inner wall of 
arteries causes atherosclerosis-generated CVDs (Shah, 2019). 
Vascular inflammation has been suggested to be a key mech-
anism in the progression of atherosclerosis, leading to acute 
coronary syndromes including myocardial infarction (MI), 
stroke, and cardiovascular death (Geovanini and Libby, 2018). 
The autonomic dysfunction was revealed in the pathogenesis 
of inflammation in atherosclerosis with reduced heart rate 
variability (HRV) that was inversely correlated with inflam-
matory markers (Rupprecht et al., 2020). This inflammation 
increased with the autonomic dysfunction and the decreased 
vagal mediated inflammatory activity. It has also been demon-

strated that the high frequency (HF) band power became low-
er, reflecting the decreased vagal activity under incremental 
carotid stenosis. The increased C-reactive protein level has also 
been suggested to be associated with the decreased vagal activ-
ity (Rupprecht et al., 2020).

HRV is defined as the variations in the time series of con-
secutive RR wave intervals of the electrocardiogram (ECG) 
waveform. It illustrates the activity of the sympathetic and 
parasympathetic nervous systems of the autonomic nervous 
system (ANS) in regulating cardiovascular activity (Shukla and 
Aggarwal, 2018b). The reduced HRV has been suggested to 
be correlated with autonomic dysfunction and has been iden-
tified as important in the early manifestation of risk factors 
(Franca et al., 2019; Trivedi et al., 2019). The HRV derived 
from the R-R interval time series has been suggested to reflect 
cardiac autonomic activity (Lin et al., 2015; Rupprecht et al., 
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2020). The hostile behavior that may generate cardiac auto-
nomic imbalance has also been suggested to promote athero-
sclerosis and cause coronary artery disease (CAD) or mortality 
(Lin et al., 2015). The higher LF/HF ratio was suggested dur-
ing neutral and anger. While reduced activation of PNS activity 
(lower HF) was revealed during recovery in CAD subjects with 
expressive hostile behavior. Further, suppressive hostility be-
havior in CAD presented a higher value of LF (SNS and PNS 
activity) and HF HRV parameters (PNS activation) (Lin et al., 
2015). The complex interaction between hemodynamic and 
humoral is linked with regulators within the autonomic and 
central nervous system that causes cardiovascular variability 
(Lanfranchi and Somers, 2002). HRV has also been suggest-
ed to have prognostic importance, along with inflammatory 
markers in predicting CVDs and other diseases (Acharya et 
al., 2006; Aggarwal et al., 2012; Carney et al., 1988; Laitio et 
al., 2007; Sajadieh et al., 2006; Shukla and Aggarwal, 2018a, b; 
Singh et al., 2019; Tarvainen et al., 2014).

The review of the literature suggested application of HRV 
parameters as input attributes to the support vector machine 
(SVM), artificial neural network (ANN), probabilistic neural 
network (PNN), and k-nearest neighbors (KNN) in the classifi-
cation of coronary artery disease (CAD) with the highest accu-
racy of 99.2% (Dolatabadi et al., 2017; Lee et al., 2008; Poddar 
et al., 2019). The HRV features have been utilized in the pre-
diction of hypertension, CAD, and atherosclerosis (Lee et al., 
2009; Ni et al., 2018; Verde and De Pietro, 2019). Few studies 
have suggested the use of wavelet and linear features of heart 
sound signals as features in the prediction of CAD (Kleiger et 
al., 1987). Magnetic resonance imaging and Doppler param-
eters have also been involved in the classification of CVDs 
(Bento et al., 2019). Further, the work with electrocardiogram 
(ECG) morphological features has been demonstrated using 
KNN and convolutional neural network (CNN) with an accura-
cy of 99.6% (Acharya et al., 2017; Kumar et al., 2017; Sharma 
and Acharya, 2019; Tan et al., 2018). Coronary artery disease 
has been suggested to be asymptomatic (Poddar et al., 2019). If 
untreated, it can lead to the development of ischemia and MI, 
with heart attack and sudden cardiac death as early symptoms 
(Poddar et al., 2019). Common diagnostic procedures involve 
the non-invasive method of electrocardiography and echo-
cardiography. The invasive methods of coronary angiography 
and cardiac catheterization are costly and time-consuming, 
requiring a highly specialized person and facility. Although the 
ECG recording is more commonly available, the invisibility of 
symptoms of atherosclerotic events on ECG (Dolatabadi et al., 
2017) has been suggested to be the major limitation. This can 
be overcome using the computer-aided technique in the iden-
tification of atherosclerosis. The objective of the present study 
is to extract features of CAD and MI from the recorded ECG 
waveform using HRV analysis. The obtained features will be 
utilized to train the machine learning algorithms in predicting 
the CAD and MI. Thus, the current study has been hypothe-
sized to predict CAD to MI using HRV parameters as features 
to the SVM and ANN classifiers.

 
Materials and methods

Participants
A total of 70 male subjects aged 55 ± 5 years participated 
in the study. Subjects suffering from MI (n = 10) and CAD  
(n = 30) were selected and recorded. Control subjects (n = 30) 
were also recorded from the hospital environment that was not 

diagnosed with any disease. Subjects suffering from CAD and 
MI with comorbidities that may influence the autonomic func-
tions, including diabetes, autoimmune disease, heart failure, 
stroke, pulmonary hypertension, lung disease, renal failure, 
and neurodegenerative disorders have been excluded from the 
study. Subjects with any medication that directly or indirectly 
affect the autonomic functions have also been excluded from 
the study. Meanwhile, adult subjects with clinically confirmed 
CAD and MI were used in the present study. The subjects 
were advised to avoid caffeine, nicotine, alcohol, and exercise 
at least 24 h before the start of the recording procedure. The 
recording was performed with approval from the Departmen-
tal Review Board (BT/RES/2021/01) as per the Declaration of 
Helsinki guidelines. Signed consent was also received from the 
subjects before the recording.

ECG recording and pre-processing
The digital lead II ECG was recorded of 10-min duration in 
the supine position from 10 AM to 12 Noon. The ECG was 
sampled at 200 samples/s. The SS2LB lead wire was used to 
connect the MP45 bio amplifier to the disposable electrodes. 
The Acqknowledge 4.0 software (Biopac Systems Inc., USA) 
was optimized with gain factor (×1000) and bandpass filter  
(0.05 to 35 Hz) settings used in acquiring the ECG signal. The 
linearization of the baseline was obtained by filtering the ac-
quired signal with a 2 Hz high pass filter.

Heart rate variability analysis
The tachogram was obtained from a filtered ECG signal of a 
five-minute duration using Acqknowledge 4.0 (Biopac Systems 
Inc., USA). A total of 10 samples were collected from each sub-
ject with a shift of 30s duration on recorded ECG signal (Heart 
rate variability…, 1996). No masking was applied in the calcu-
lation of the HRV parameters. The complete recorded ECG sig-
nal was used in the calculation of HRV parameters and feature 
extraction. As per the suggestions of the expert clinician, the 
data were recorded blindly from the subjects, considering that 
there was no major comorbidity. The R-waves were located us-
ing a QRS detector with a heart rate (30 bpm to 240 bpm). The 
spline resampling frequency was taken at 8 Hz. The very low 
frequency (VLF), low frequency (LF), and high frequency (HF) 
range were set to 0.0–0.04 Hz, 0.04–0.15 Hz, and 0.15–0.40 
Hz, respectively. The HRV parameters were obtained from the 
tachogram using Kubios HRV software V2.0 (University of 
Eastern Finland, Kuopio, Finland). The physiological interpre-
tations of HRV parameters are illustrated in Table 1.

Time domain parameters
The time-domain analysis involved the mean value of R-R wave 
interval (mRR), average heart rate (mHR), a standard devia-
tion of R-R interval (SDNN), square root of the mean squared 
differences of successive R-R interval (rMSSD), triangular 
index (TI), triangular interpolation of R-R intervals (TiNN), 
a standard deviation of heart rate (SDHR), count of successive 
R-R interval >50 ms (NN50), and the ratio of NN50 to the total 
R-R intervals count (pNN50).

Frequency domain parameters
In the frequency domain,  LF, and HF spectral parameters were 
obtained from the Fourier transformation method. Further, 
the autonomic balance as predicted from the ratio of LF to HF 
was also calculated. On the contrary, studies have suggested 
that the LF and LF/HF ratio reflects the baroreflex function 
and not the sympathetic tone (Goldstein et al., 2011; Rahman 
et al., 2011).
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Table 1. Physiological Interpretation of heart rate variability parameters

HRV parameters Units Description SNS/PNS activity References

mRR ms Mean of R-R interval of ECG waveform PNS Acharya et al., 2006

SDNN ms Standard deviation of R-R interval PNS Guan et al., 2018

mHR bpm Mean heart rate SNS Aggarwal et al., 2018b

SDHR bpm Heart rate standard deviation SNS Aggarwal et al., 2018b

rMSSD ms
The square root of the average squared differences between 
adjacent RR intervals

PNS Guan et al., 2018

NN50 count Count of R-R intervals differing >50 ms PNS Guan et al., 2018

pNN50 % count Percentage of R-R interval that differs >50 ms PNS Guan et al., 2018

Ti a.u. Total number of NN intervals divided by the height of histogram PNS

TiNN ms Triangular interpolation of the highest peak of the histogram PNS

LF n.u. Low frequency component Baroreflex activity
Goldstein et al., 2011; 
Rahman et al., 2011). 

HF n.u. High frequency component PNS Guan et al., 2018 

LF/HF a.u. Ratio of LF to HF normalized powers Baroreflex activity
Goldstein et al., 2011; 
Rahman et al., 2011).

SD1 ms
Standard deviation of peak to peak interval perpendicular to the 
line of identity

PNS Shaffer and Ginsberg, 2017

SD2 ms
Standard deviation of peak to peak interval along the line of 
identity

SNS and PNS Orellana et al., 2015

SD2/SD1 a.u. Ratio of SD2 to SD1 SNS Behbahani et al., 2012

Lmean beats Mean length of the diagonal lines in the recurrence plot SNS and PNS Takakura et al., 2017

Lmax beats The longest diagonal line in the recurrence plot PNS Takakura et al., 2017

REC % The ratio of ones and zeros in the recurring plot matrix SNS and PNS Takakura et al., 2017

DET %
Determinism represents the percentage of REC points that form 
diagonal lines

ShanEn a.u. Shannon Entropy of diagonal length distribution PNS Schlenker et al., 2014

ApEn and 
SampEn

a.u.
Approximate and Sample entropy parameters determine the 
irregularity in the signal

PNS Schlenker et al., 2014

Alpha 1 and 
Alpha 2

a.u.
Alpha 1 and Alpha 2 represents low scale and high scale 
detrended fluctuation slope

PNS
Shukla and Aggarwal, 

2018a

CD a.u. The correlation dimension revealed the signal complexity PNS
Shukla and Aggarwal, 

2018a

ms – mili second; bpm, beats per minute; a.u. – arbitrary unit; n.u. – normalized unit; SNS – sympathetic nervous system; PNS – parasympathetic 
nervous system, respectively.

Nonlinear domain parameters
The nonlinear methods measure the complexity of RRi. The 
different parameters include the Poincare plot (PP) with short 
(SD1) and long-term variability (SD2), with RRi points above 
or below the line of identity on the elliptical-shaped plot. The 
entropy approximate (ApEn) and sample entropy (SampEn) 
reflects the signal complexity, and are used in measuring the 
randomness of heart rhythm. The short (α1) and long (α2) de-
trended fluctuation analysis (DFA) removes the linear trends 
in the nonlinear signal. The correlation dimension (CD) value 
measured the line patterns (saturated at finite value) with var-
ying heart rates (HR). The recurrence plot signifies the time, 
the line is parallel to the main diagonal line (Tarvainen et al., 
2014).

Features and classification algorithm
All the HRV parameters in different domains were selected to 
train and test the classification accuracy using ANN and SVM. 
The time, frequency, and nonlinear domain parameters were 
grouped and used as input nodes to the ANN model. The two-

class networks were optimized for best accuracy in the classi-
fication of MI and CAD from control subjects. 80% of the da-
taset was used for the training and 20% for the testing of both 
models. The performance metrics were also evaluated from 
the obtained confusion matrix as mentioned below (Baratloo 
et al., 2015):

•	 Sensitivity = [TP/(TP + FN)]*100
•	 Specificity = [TN/(TN + FP)]*100
•	 Accuracy = f(TP + TN)/(TP + TN + FP + FN)]*100
•	 Precision = [TP/(TP = FP)]*100
TP, true positive; TN, true negative; FP, false positive; FN, false negative

Backpropagation ANN model for classification of MI and CAD
Python language (Anaconda, Inc., USA) was used in develo-
ping the three-layered backpropagation ANN model. The mo-
del consists of 25 nodes in the input layer (IL) and one node 
in the output layer (OL). The hidden layer (HL) was optimized 
with varying learning rates (LR). The model was implemented 
in the prediction of CAD and MI subjects from the controls. 
The value of twenty-five HRV features was used to train the 
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ANN model. The activation function (ReLU), y = max (0, x) was 
used at hidden layer nodes. The LR range from 0.001 to 0.1 was 
assigned to the model for optimization of HL nodes at 10000 
epochs. The sigmoid activation function (f(z) = 1 / 1 + e–z ) was 
used at the output node to predict the target.

Support vector machine
The SVM distinguishes the two hyperplane data points with 
distance minimization. The optimized hyperplane was esti-
mated by the SVM, with box constraint (C) > 0. The radial basis 
function kernel was used with scale (γ) > 0 for optimized SVM. 
The algorithm was programmed in Python using the Anacon-
da programming language. The twenty-five HRV features were 
used as input to SVM. The kernel was optimized with C and γ 
values ranging from 0.001 to 10 and 0.001 to 1, respectively.

Statistical analysis
One-way ANOVA was performed to test significant differences 
between the independent samples of different sizes originat-
ing from the Control, CAD, and MI subjects. The quantitative 
data on time, frequency, and nonlinear domain of the HRV 
analysis was used for the statistical analysis. The null hypo- 
thesis selected was ‘At least one group mean is different from 
other groups’. The code was written and designed in Python 
V3.6.8 to analyze the test at P < 0.05. The study procedure in 
deriving the HRV parameters from the ECG signal and the ap-
plication of machine learning algorithms is shown in Fig. 1.

 
Results

In the present study, the HRV features were extracted from 
the ECG signal of CAD (n = 30) and MI (n = 10) subjects. Sta-
tistically, the one-way ANOVA test demonstrated significant 
difference exits between the CAD, MI, and Control (n = 30) 
groups. A flowchart summarising the subjects’ flow through 
the study is illustrated in Fig. 2.

Heart rate variability analysis in atherosclerosis
The obtained HRV results revealed a significantly lower value 
of mRR (F = 3.80, P = 0.02) in both CAD and MI in compar-
ison to the control subjects. Further the value was observed 
to be lower in MI group than in the CAD group (Fig. 3). mHR  

 

 

Recording of lead-II electrocardiogram

Derivation consecutive R-R interval time series

Heart rate variability parameters estimation (Kubios V2.0) 

Time-domain  Nonlinear-domain Frequency-domain

Statistical analysis using one-way ANOVA

Selection of heart rate variability parameters as input to 
the machine learning algorithms (SVM and ANN) 

Optimization of SVM and ANN

Output accuracy

Fig. 1. Flowchart depicting the study procedure

 

 
 
 

Questionnaire asked about 
comorbidities and medication 

Those who declined to 
give consent excluded 

Lead-II ECG recording for 10 minutes 
after the exclusion of participants 

Male subjects recruited from the RIMS, 
Ranchi Hospital 

Subjects with 
comorbidities and 

medication excluded 

Written and signed consent obtained 

Subjects on caffeine, 
nicotine, alcohol, and 

who performed 
exercise at least 24 hrs 

prior to 
experimentation 

excluded 

(F = 17.70, P < 0.0001) value was found to be significantly 
higher in both the CAD and MI groups than in the control 
subjects. Further, the MI group exhibited higher mHR values 
than in the CAD subjects (P < 0.0001) (Fig. 4). Further, the 
value of LF (F = 2.83, P = 0.05) and SD2 (F = 7.64, P = 0.0005) 
parameters were also observed to be significantly lower in the 
CAD subject than in the Control group. While the value of LF 
(P = 0.1875) and SD2 (P = 0.1463) was found to be lower in 
MI subjects in comparison to the control group. However, the 
value was not found to be statistically significant. Further, the 
value of LF (P = 0.0030) and SD2 (P = 0.0173) parameters were 
found to be significantly higher in MI subjects than in the CAD 
subjects (Fig. 4).

Fig. 2. A flowchart summarizing participant flow through the study
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Fig. 3. The change in mRR (mean R to R interval) (mean ± SD,  
P < 0.05) in-effect to Control, CAD and MI subjects. CAD and MI 
represent coronary artery disease and myocardial infarction,  
ms – millisecond and SD – standard deviation. Asterisk * indicates  
a statistically significant difference.

 

Fig. 4. The chart demonstrates variations in mHR, SD2 and LF 
parameters in Control, CAD and MI subjects (mean ± SD, P < 0.05). 
CAD and MI represent coronary artery disease and myocardial 
infarction, SNS – sympathetic nervous activity, a.u. – arbitrary 
unit, mHR – mean heart rate, LF – low frequency, SD2 – standard 
deviation of peak to peak interval along the line of identity and  
SD – standard deviation. Asterisk * indicates a statistically significant 
difference.

The value of the SD1 (F = 3.01, P = 0.04) parameter was 
found to be lower in CAD (P = 0.0031) and MI (P = 0.0076) 
subjects than in the control subjects. However, there was 
a trend for SD1 to be lower in MI than in the CAD subjects 
however did not reach the statistical significance (P = 0.1520). 
The value of SDNN (P = 0.0001) and rMSSD (P = 0.0025) were 
significantly lower in CAD group than in the control group 
(Fig. 5). Although, the value of SDNN (P = 0.0694) and rMSSD 
(P = 0.3192) were also observed to be lower in MI group in 
comparison to the control subjects but failed to define the sta-
tistical significance. MI subjects also exhibited a higher value 
than the CAD subjects in both SDNN (P = 0.3511) and rMSSD 
(P = 0.2081) parameters but did not reach statistical signifi-
cance (Fig. 5). The value of the Lmax parameter was found to 
be significantly lower in CAD (P < 0.0001) and MI (P < 0.0001) 
subjects than in the control subjects. Further, the trend was 

observed for Lmax to be lower in MI than in the CAD subjects 
and found to be statistically significant (P = 0.0160) (Fig. 5). 
A higher value of the TiNN parameter was observed in both 
the CAD (P = 0.2380) and MI (P = 0.9993) subjects in com-
parison to the control group however the value was found to 
be insignificant. While the value was found to be lower in MI 
than in the CAD subjects but failed to reach the significance  
(P = 0.4000) (Fig. 5).

The value of Ti, NN50 and pNN50 HRV parameters were 
found to be significant lower in both the CAD (P < 0.0001,  
P < 0.0001 and P < 0.0001 respectively) and MI (P < 0.0001,  
P < 0.0001 and P = 0.0164 respectively) group than in the con-
trol subjects. Further, a higher value of Ti, NN50 and pNN50 
in MI (P < 0.0001, P < 0.0001 and P = 0.0002 respectively) 

 

Fig. 5. The HRV parameters SD1, SDNN, rMSSD, Lmax and TiNN reflect the change in PNS activity under Control, CAD and MI subjects  
(mean ± SD, P < 0.05). CAD and MI represent coronary artery disease and myocardial infarction, HRV – heart rate variability, a.u. – arbitrary 
unit, PNS – parasympathetic nervous system, SD1 – standard deviation of peak to peak interval perpendicular to the line of identity,  
SDNN – standard deviation of R-R interval, rMSSD – square root of the average squared differences between adjacent RR intervals,  
Lmax – longest diagonal line in the recurrence plot, TiNN – triangular interpolation of the highest peak of the histogram and SD – standard 
deviation. Asterisk * indicates a statistically significant difference.
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subjects than in the CAD group and define the statistically sig-
nificant difference. Although a significantly higher value of HF 
was observed in the CAD (P < 0.0001) and MI (P = 0.0430) 
group in comparison to the control group. Further, MI sub-
jects exhibited lower values than the CAD subjects but failed 

to define the statistical significance (P = 0.1164). The Lmean 
value also found to be in CAD (P = 0.0646) and MI (P = 0.2571) 
groups however did not reach the statistical significance  
(Fig. 6).

 

Fig. 6. The HRV parameters, Ti, pNN50, Lmean, NN50 and HF (mean ± SD, P < 0.05) reflect the change in parasympathetic activity in Control, 
CAD and MI Subjects. where CAD and MI represent coronary artery disease and myocardial infarction, HRV – heart rate variability,  
a.u. – arbitrary unit, Ti – total number of NN intervals divided by the height of histogram, pNN50 – percentage of R-R interval that differs  
>50 ms, Lmean – mean length of the diagonal lines in the recurrence plot, NN50 – count of R-R intervals differing >50 ms, HF – high frequency 
and SD – standard deviation. Asterisk * indicates a statistically significant difference.

The approximate entropy analysis revealed significantly 
lower values in CAD (P <0.0001) and MI (P < 0.0001) as com-
pared to control subjects. MI subjects demonstrated marginal 
lower values in comparison to CAD subjects however failed to 
define the statistical significance (P = 0.9985) (Fig. 7).

 

Fig. 7. The chart demonstrates the variation in approximate (ApEn) 
and sample (SampEn) entropy parameters in Control, CAD and MI 
subjects (mean ± SD, P < 0.05). CAD and MI represent coronary 
artery disease and myocardial infarction, a.u. – arbitrary unit and 
SD – standard deviation. Asterisk * indicates a statistically significant 
difference.

The Sample entropy analysis demonstrated an insignifi-
cant higher value in CAD (P = 0.0512) and a lower value in MI 
(P = 0.5147) subjects as compared to the control subjects. Fur-
ther, the statistically significant value was found to be lower 
in MI subjects than the CAD subjects (P = 0.0373) as shown in 
Fig. 7. The α1 (F = 14.38, P = 0.0001), α2 (F = 30.01, P < 0.0001) 
and CD (F = 60.53, P = 0.0001) results revealed significantly 
lower values in CAD (P < 0.0001, P < 0.0001 and P < 0.0001 
respectively) and MI (P = 0.0070, P < 0.0001 and P <0.0001 
respectively) compared to the control group. The marginal  

 

Fig. 8. The detrended fluctuation analysis (α1 and α2) and 
correlation dimension (CD) in differentiating the control, CAD, and 
MI subjects (mean ± SD, P < 0.05). CAD and MI represent coronary 
artery disease and myocardial infarction, a.u. – arbitrary unit and 
SD – standard deviation. Asterisk * indicates a statistically significant 
difference.

Kumar et al. / J Appl Biomed
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Two-class machine learning in the prediction of CAD 
and MI events
The ANN architecture was optimized first the varying LR from 
0.001 to 0.9 with fixed hidden nodes number to 13. The opti-
mized LR was selected with the highest classification accuracy. 
Secondly, the number of hidden nodes varied from 13 to 65 in 
the hidden layer and kept the LR at an optimized rate. The op-
timized ANN architecture and SVM were used to classify CAD 
and MI events, as presented in Table 2.

The obtained results demonstrated 100% accuracy in the 
classification of CAD and MI subjects from the control sub-
jects using ANN. SVM had an accuracy of 99.6%. An accuracy 
of 99.3% and 99.0% was obtained in the classification of CAD 
from MI subjects using SVM and ANN, respectively (Table 2). 
The performance metrics in evaluating the SVM and ANN 
model for the obtained training accuracy are illustrated in  
Table 3.

 

lower α1 and α2 values were observed in CAD (P = 0.8860 and 
P = 0.5679 respectively) than MI subjects however the differ-
ence was found to be statistically not significant. A significant 
difference was found in CD values of CAD and MI subjects  
(P < 0.0001) (Fig. 8). The SDHR, LF/HF and ShanEn were 
found to have significantly lower in the CAD (P = 0.0204,  
P = 0.0004 and P = 0.0003 respectively) group as compared to the 
control groups. Higher value of SDHR (p = 0.2799) was found 
to be insignificant between control and MI. Further, increased 
value of MI was observed in MI as compared to CAD. How-
ever, the difference did not reach the statistically significant  
(p = 0.322) (Fig. 9). The value of LF/HF, SD2/SD1 and ShanEn 
were observed to be significantly lower in MI subjects than in 
the control group (P = 0.0465, p = 0.0364 and P = 0.0158 re-
spectively). The REC (P = 0.0077) and DET (P = 0.0083) para- 
meters demonstrated a significant difference with lower values 
in MI as compared to the CAD subjects as shown in Fig. 9.

Fig. 9. Heart rate variability parameters SDHR, LF/HF, SD2/SD1, REC, DET and ShanEn in the comparison of control, CAD, and MI subjects 
(mean ± SD, P < 0.05). CAD and MI represent coronary artery disease and myocardial infarction, a.u. – arbitrary unit, SDHR – standard 
deviation of Heart rate, LF/HF – ratio of LF to HF, SD2/SD1 – ratio of SD2 to SD1, REC – the ratio of ones and zeros in the recurring plot 
matrix, DET – determinism represents the percentage of REC points that form diagonal lines, ShanEn – Shannon Entropy of diagonal length 
distribution and SD – standard deviation. Asterisk * indicates a statistically significant difference.

Table 2. Artificial neural network (ANN) and support vector machine (SVM) two-class architecture in the classification of atherosclerotic events

Case Class I Class II SVM (%) Optimized SVM model ANN (%) Optimized ANN 
architecture (LR)

1 CAD MI 99.3 (C = 3, γ = 0.07) 99.0 25:26:1 (0.1)

2 Control CAD 99.6 (C = 3, γ = 0.001) 100 25:13:1 (0.1)

3 Control MI 99.6 (C = 8, γ = 0.04) 100 25:13:1 (0.01)

CAD and MI for coronary artery disease and myocardial infarction, respectively. LR for learning rate, C box constraint, and γ radial basis function 
kernel scale.

Table 3. Performance metrics of the machine learning model used in the classification of CAD and MI subjects from the control group

Performance metrics (%)

Class 1 Class 2 Model Sensitivity Specificity Accuracy Precision

Control CAD SVM 99.2 100 99.6 100

Control MI SVM 99.6 100 99.6 100

CAD MI SVM 99.2 100 99.3 100

Control CAD ANN 100 100 100 100

Control MI ANN 100 100 100 100

CAD MI ANN 98.8 100 99.0 100

CAD, MI, SVM and ANN for coronary artery disease, myocardial infarction, support vector machine, and artificial neural network, respectively.

Kumar et al. / J Appl Biomed
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Discussion

This study was undertaken to predict CAD and MI events of 
atherosclerosis using HRV parameters. The obtained results 
demonstrated withdrawal of PNS tone with higher SNS activi-
ty to maintain the autonomic balance, causing depressed HRV 
in CAD and MI subjects in comparison to control subjects. 
Two-class classifiers were implemented in the classification 
of atherosclerotic events. An accuracy of 100% was obtained 
in classifying the CAD and MI subjects from controls using 
ANN. An accuracy of 99.3% was obtained in the classification 
of CAD and MI subjects using SVM. The applications of HRV 
parameters in the prognosis of the diseases are limited at the 
research level but not in clinical practice. This may be due to 
varied agreement on the efficacy and accuracy of HRV in the 
clinical diagnosis. Further, the autonomic function may vary 
with other comorbidities. Thus, future work will be enhanced 
by the inclusion of more samples of varied gender, age groups, 
and other comorbidities in analyzing the HRV parameters, 
with a larger test dataset in training and testing the machine 
learning model proposed in the present study. The outcome of 
future work will help to design and develop a robust comput-
er-assisted approach for clinical use.

Heart rate variability analysis in autonomic function
A review of the literature revealed SNS dominance with PNS 
withdrawal to maintain autonomic balance under low HRV. 
While higher HRV value demonstrated a shift of autonomic 
balance towards increased vagal tone (Xhyheri et al., 2012). 
The observed results were in line with previous findings that 
suggested PNS impairment with the dominance of LF and low-
ered time domain parameter in CAD (Abdelnabi, 2019; Carney 
et al., 2001; Xhyheri et al., 2012). Further, the lower value of 
SDNN was demonstrated to be an independent factor in pre-
dicting mortality in post-surgery MI patients (Kleiger et al., 
1987).

It has been revealed that the higher risk of mortality and 
morbidity with decreased HRV in CAD depressed patients 
reflects autonomic dysregulation (Tristani et al., 1977). The 
reduced HRV was also suggested to be associated with rapid 
subintimal lipid accumulation, leading to coronary narrowing 
(Huikuri et al., 1999). The SDNN was observed to predict in-
tima-media thickness and progression of coronary atheroscle-
rosis. Further, the atherosclerotic process was also revealed to 
be correlated with autonomic dysregulation in the frequency 
domain (Manfrini et al., 2008). Lower vagal tone was suggest-
ed to cause coronary vasoconstriction through loss of PNS me-
diated vasodilation (Xhyheri et al., 2012). This withdrawal of 
PNS was suggested to cause coronary instability resulting in 
coronary ischemia with worsened prognosis (Heusch, 2011).

Further, Singer and co-workers demonstrated a prediction 
of mortality among patients undergoing coronary angiog-
raphy with low HRV (Maheshwari et al., 2016). A significant 
increase in LF and decrease in HF corresponding to sympa-
thetic activation and reduced vagal tone were also suggested, 
and SNS plays a major role in the progression of heart failure 
(Sztajzel, 2004). The decreased SDNN HRV measures in MI pa-
tients and after MI has suggested a higher risk of mortality 
(Buccelletti et al., 2009; Stein and Kleiger, 1999). The mean 
HR was reported to be higher in CAD patients, revealing the 
role of increased sympathetic activity. This also promotes the 
manifestation of ischemic heart diseases, lethal arrhythmias, 
or increased atherosclerosis (Carney et al., 1988). The value 
of LF/HF was demonstrated to be lower in patients with MI 

(Quintana et al., 1997). Recently, the increase and decrease in 
LF and HF respectively were also suggested two weeks after 
MI. While the reverse was observed at six to twelve months af-
ter MI (Abdelnabi, 2019). Further, a lower value of SDNN was 
reported in acute MI subjects and associated with increased 
mortality (Abdelnabi, 2019; Kleiger et al., 1987). The CAD 
patients have been suggested to have a lower value of NN50 
and pNN50 in comparison to normal subjects (Acharya et al., 
2014). While higher value was observed in SampEn and ApEn 
(Shi et al., 2019).

Analysis of machine learning approaches
The SVM and ANN presented an accuracy of 99.6% and 100% 
in depicting the CAD and MI subjects from controls, respec-
tively using SVM and ANN. The published findings revealed an 
accuracy of 99.2%, 90%, and 80% in the classification of CAD 
using SVM, PNN, and KNN (Dolatabadi et al., 2017; Poddar 
et al., 2019). In another study, accuracy of 85% and 70% were 
also reported in depicting CAD with the SVM technique (Lee 
et al., 2008). Further, an accuracy of 99.1% was demonstrated 
with ANN and K-fold validation in the detection of MI subjects 
(Shahnawaz and Dawood, 2021). Sopic et al. (2018) attained 
an accuracy of 83.26% in the classification of MI using time 
and frequency domain features with a random forest classifier.

Singh et al. (2022) demonstrated an accuracy of 99.76% 
and 100% in the prediction of young and elderly CAD subjects 
using HRV features with generalized discriminant analysis.

Shi et al. (2019) suggested Renyi Distribution Entropy fea-
tures in the prediction of CAD with an accuracy of 97.5% with 
KNN. The wavelet and linear features of the heart sound signal 
revealed an accuracy of 85% and 90% using ANN and SVM, 
respectively (Karimi et al., 2005; Kleiger et al. 1987). ECG 
morphological features-based work had an accuracy of 79.2% 
to 99.6% using SVM, KNN, and CNN as a classifier (Acharya 
et al., 2017; Kumar et al., 2017; Sharma and Acharya, 2019; 
Tan et al., 2018). The imaging feature extracted from magnetic 
resonance and doppler technique demonstrated an accuracy of 
97.5% and 81.4% using SVM (Bento et al., 2019). The ANN 
and SVM models were demonstrated to classify the diabetic 
and control subjects with an accuracy of 96.2% and 95.2% us-
ing time-domain HRV features (Aggarwal et al., 2021). While, 
in another study, the nonlinear HRV parameters were used to 
classify the diabetic subjects with an accuracy of 86.3% and 
90.5% using ANN and SVM, respectively (Aggarwal et al., 
2020). Time-domain parameters of HRV have been used for 
the classification of diabetes from control subjects (rat model) 
using ANN and SVM model, and 96.2% and 65.2% accuracy 
has been achieved (Agarwal et al., 2021). Further, non-linear 
domain parameters of HRV have also been used for the clas-
sification of diabetes from control subjects (rat model) using 
the ANN and SVM model, and 86.3% and 90.5% accuracy have 
been achieved (Agarwal et al., 2020).

Limitations and future direction
The major limitation of the present work is the low sample 
size. Also, other comorbidities have not been considered. The 
single-channel digital ECG was recorded for only 10 minutes 
to extract the HRV features. The applications of HRV analy-
sis in the diagnosis of autonomic function are limited at the 
research level and not in clinical practice. This may be due to 
varied agreement on the efficacy and accuracy of HRV in the 
clinical diagnosis. Further, the assessment of HRV with other 
comorbidities needs to be studied, which may impact the HRV 
analysis. The work will be enhanced with the inclusion of more 
samples of varied gender and age groups in analyzing the HRV 
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parameters and creating a larger test dataset in testing the 
ANN and SVM model proposed in the present study. The out-
come of future work will help to design and develop a robust 
computer-assisted approach for clinical use.

 
Conclusions

The investigation demonstrated depressed HRV in CAD and 
MI patients in comparison to normal subjects. The proposed 
system, utilizing twenty-five HRV features, presented an accu-
racy of 100% in predicting CAD and MI subjects from control 
subjects. Thus, this non-invasive and cost-effective comput-
er-assisted method can be automatically implemented in the 
early prediction of CAD and MI conditions.
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