J Appl Biomed 1:149-159, 2003 | DOI: 10.32725/jab.2003.029

Microscopic image analysis of elastin network in samples of normal, atherosclerotic and aneurysmatic abdominal aorta and its biomechanical implications

Zbyněk Tonar1,2,*, Stanislav Němeček2, Radek Holota2, Jitka Kočová1, Vladislav Třeška3, Jiří Moláček3, Tomáš Kohoutek1, Šárka Hadravská4
1 Department of Histology and Embryology, Charles University in Prague, Faculty of Medicine in Pilsen, Czech Republic
2 New Technologies - Research Centre in Westbohemian Region, University of West Bohemia, Pilsen, Czech Republic
3 Department of Surgery, University Hospital in Pilsen, Czech Republic
4 Department of Pathology, Charles University in Prague, Faculty of Medicine in Pilsen, Czech Republic

The aim of our work was to prepare part of the input data for a computational biomechanical model of both the active and passive elements of the tunica media of an aortic aneurysm. We analyzed tissue samples of the anterior wall of the normal, atherosclerotic and aneurysmatic subrenal abdominal aorta. We assessed the proportions of smooth muscle cells, elastin and collagen in histological sections of these samples and studied the morphological characteristics of the elastin network in the tunica media. Selected photomicrographs were studied, representing relatively well preserved areas without artifacts, ruptures, corrupted integrity of the tunica media or total elastinolysis. A new method was introduced for the assessment of structures formed by elastin membranes and fibres, using the fast Fourier transform (FFT) technique. The image was transformed into reciprocal (Fourier) space and the method made use of the fact that the FFT was very sensitive to the orientation distribution of thresholded elastin morphology. The results of this comparative study, obtained from selected samples from 24 patients, revealed that the percentage values of the constituents of the arterial wall can not distinguish between the preserved segments of normal, atherosclerotic or aneurysmatic aorta. The results of the Fourier analysis proved that the FFT provided an efficient method for evaluating cross sections of the elastin membranes and fibres, reflecting their anisotropy. The shape of the power spectrum of elastin was a simple pattern, whose description was quantified by the shape of its polar coordinates histogram. We discuss the methodological difficulties and biomechanical implications of our work as well compare it to other methods of elastin analysis.

Keywords: abdominal aortic aneurysm; elastin; image processing; biomechanics

Received: April 9, 2003; Published: July 31, 2003  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Tonar Z, Němeček S, Holota R, Kočová J, Třeška V, Moláček J, et al.. Microscopic image analysis of elastin network in samples of normal, atherosclerotic and aneurysmatic abdominal aorta and its biomechanical implications. J Appl Biomed. 2003;1(3):149-159. doi: 10.32725/jab.2003.029.
Download citation

References

  1. Allaire E., B. Muscatelli-Groux, C. Mandet, A.M. Guinault, P. Bruneval, P. Desgranges: Paracrine effect of vascular smooth muscle cells in the prevention of aortic aneurysm formation. J. Vasc. Surg. 36: 1018-1026, 2002. Go to original source... Go to PubMed...
  2. Avolio A., D. Jones, M. Tafazzoli-Shadpour: Quantification of alterations in structure and function of elastin in the arterial media. Hypertension 32: 170-175, 1998. Go to original source... Go to PubMed...
  3. Bonamigo T.P., C. Bianco, M. Becker, F. Puricelli: Inflammatory aneurysms of infra-renal abdominal aorta. A case-control study. Minerva Cardioangiol. 50: 253-258, 2002. Go to PubMed...
  4. Bracewell R.N.: The Fourier Transformation and its Applications, McGraw-Hill Book Company, New York 1965, pp. 640.
  5. Carmo M., L. Colombo, A. Bruno, F.R. Corsi, L. Roncoroni, M.S. Cuttin, F. Radice, E. Mussini, P.G. Settembrini: Alteration of elastin, collagen and their cross-links in abdominal aortic aneurysms. Eur. J. Vasc. Endovasc. Surg. 23: 543-549, 2002. Go to original source... Go to PubMed...
  6. Carvalho de H.F. and S.R. Taboga: Fluorescence and confocal laser scanning microscopy imaging of elastic fibers in hematoxylin-eosin stained sections. Histochem. Cell. Biol. 106: 587-592, 1996. Go to original source... Go to PubMed...
  7. Curci J.A., S. Liao, M.D. Huffman, S.D. Shapiro: Expression and localization of macrophage elastase (matrix metalloproteinase-12) in abdominal aortic aneurysms. J. Clin. Invest. 102: 1900-1910, 1998. Go to original source...
  8. Davis V.A., R.N. Persidskaia, L.M. Baca-Regen, N. Fiotti, B.G. Halloran, B.T. Baxter: Cytokine pattern in aneurysmal and occlusive disease of the aorta. J. Surg. Res. 101: 152-156, 2001. Go to original source... Go to PubMed...
  9. Farber A., W.H. Wagner, D.V. Cossman, J.L. Cohen, D.B. Walsh, M.F. Fillinger, J.L. Cronenwett, S.R. Lauterbach, P.M. Levin: Isolated dissection of the abdominal aorta: clinical presentation and therapeutic options. J. Vasc. Surg. 36: 205-210, 2002. Go to original source... Go to PubMed...
  10. Godfrey M., P.A. Nejezchleb, G.B. Schaefer, D.J. Minion, Y. Wang, B.T. Baxter: Elastin and fibrillin mRNA and protein levels in the ontogeny of normal human aorta. Connect. Tissue Res. 29: 61-69, 1993. Go to original source... Go to PubMed...
  11. Hallingbye T.M. and J.J. Kane: Examining a CT scan of an abdominal aortic aneurysm. Part 1: Measuring the thrombus to aneurysm ratio using MatLab. Biomed. Sci. Instrum. 38: 375-380, 2002. Go to PubMed...
  12. Henderson E.L., Y.J. Geng, G.K. Sukhova, A.D. Whittemore, J. Knox, P. Libby: Death of smooth muscle cells and expression of mediators of apoptosis by T lymphocytes in human abdominal aortic aneurysms. Circulation 99: 96-104, 1999. Go to original source... Go to PubMed...
  13. Holmes D.R., S. Liao, W.C. Parks, R.W. Thompson: Medial neovascularisation in abdominal aortic aneurysms: a histopathologic marker of aneurysmal degeneration with pathophasiologic implications. J. Vasc. Surg. 21: 761-771, 1995. Go to original source... Go to PubMed...
  14. Holota R. and S. Němeček: Recognition of oriented structures by 2D Fourier transform. - In Pinker J. (ed.): Applied Electronics 2002, University of West Bohemia, Pilsen 2002, pp. 88-92.
  15. Jones K.G., D.J. Brull, L.C. Brown, M. Sian: Interleukin-6 (IL-6) and the prognosis of abdominal aortic aneurysms. Circulation 103: 2260-2265, 2001. Go to original source... Go to PubMed...
  16. Kobayashi M., J. Matsubara, M. Matsushita, N. Nishikimi, T. Sakurai, Y. Nimura: Expression of angiogenesis and angiogenic factors in human aortic vascular disease. J. Surg. Res. 106: 239-245, 2002. Go to original source... Go to PubMed...
  17. Kočová J.: Overall staining of connective tissue and the muscular layer vessels. Folia Morphol. 18: 293-295, 1970.
  18. Matsushita M., N. Nishikimi, T. Sakurai, Y. Nimura: Relationship between aortic calcification and atherosclerotic disease in patients with abdominal aortic aneurysm. Int. Angiol. 19: 276-279, 2000. Go to PubMed...
  19. Nollendorfs A., T.C. Greiner, H. Nagase, B.T. Baxter: The expression and localization of membrane type-1 matrix metalloproteinase in human abdominal aortic aneurysms. J. Vasc. Surg. 34: 316-322, 2001. Go to original source... Go to PubMed...
  20. Patel H., M. Krishnamoorthy, R.A. Dorazio, J. Abu Dalu, R. Humphrey, J. Tyrell: Thrombosis of abdominal aortic aneurysms. Am. Surg. 60: 801-803, 1994. Go to PubMed...
  21. Petrou M. and P. Bosdogianni: Image Processing: The Fundamentals. Willey, New York 1999, pp. 354. Go to original source...
  22. Rehm J.P., J.J. Grange, B.T. Baxter: The formation of aneurysm. Seminars in Vascular Surgery 11: 193-202, 1998.
  23. Rohde L.E., L.H. Arroyo, N. Rifai, M.A. Creager, P. Libby, P.M. Ridker, R.T. Lee: Plasma concentrations of interleukin-6 and abdominal aortic diameter among subjects without aortic dilatation. Arterioscler. Thromb. Vasc. Biol. 19: 1695-1699, 1999. Go to original source... Go to PubMed...
  24. Russ J.C.: Computer-assisted microscopy. Plenum Press, New York 1990, pp. 466. Go to original source...
  25. Saleh B.E.A. and M.C. Teich: Fundamentals of Photonics. Willey, New York 1991, pp. 992. Go to original source...
  26. Satta J., Y. Soini, M. Mosorin, T. Juvonen: Angiogenesis is associated with mononuclear inflammatory cells in abdominal aortic aneurysms. Annales Chirurgiae et Gynecologiae 87: 40-42, 1998.
  27. Silence J., D. Collen, H.R. Lijnen: Reduced atherosclerotic plaque but enhanced aneurysm formation in mice with inactivation of the tissue inhibitor of metalloproteinase-1 (TIMP-1) gene. Circ. Res. 90: 897-903, 2002. Go to original source... Go to PubMed...
  28. Thompson M.M., L. Jones, A. Nasim, R.D. Sayers: Angiogenesis in abdominal aortic aneurysms. Eur. J. Vasc. Endovasc. Surg. 11: 464-469, 1996. Go to original source... Go to PubMed...
  29. Třeška V., O. Topolčan, P.W. Wenham, L. Pecen: Metabolism of cytokines in abdominal aortic aneurysms. Rozhl. chir. 77: 225-229, 1998. Go to PubMed...
  30. Weissar P., J. Fiřt, Z. Tonar: IMAL - the software for image analysis of the histology of normal and aneurysmatic aorta. In Pinker J. (ed.): International Conference Applied Electronics 2001, University of West Bohemia, Pilsen 2001, pp. 260-261.
  31. Wills A., M.M. Thompson, M. Crowether, R.D. Sayers: Pathogenesis of abdominal aortic aneurysms - cellular and biochemical mechanisms. Eur. J. Vasc. Endovasc. Surg. 12: 391-400, 1996. Go to original source... Go to PubMed...
  32. Wilson K.A., A.J. Lee., P.R. Hoskins, F.G. Fowkes, C.V. Ruckley, A.W. Bradbury: The relationship between aortic wall distensibility and rupture of infrarenal abdominal aortic aneurysm. J. Vasc. Surg. 37: 112-117, 2003. Go to original source... Go to PubMed...
  33. Zarins C.K., C. Xu, S. Glagov: Atherosclerotic enlargement of the human abdominal aorta. Atherosclerosis 155: 157-164, 2001. Go to original source... Go to PubMed...