J Appl Biomed 17:11, 2019 | DOI: 10.32725/jab.2019.005

Genetically engineered CAR T-immune cells for cancer therapy: recent clinical developments, challenges, and future directions

Sherien M. El-Daly1,2,*, Jihan Hussein1
1 National Research Centre, Medical Research Division, Department of Medical Biochemistry, Dokki, Cairo, Egypt
2 National Research Centre, Centre of Excellence for Advanced Sciences, Cancer Biology and Genetics Laboratory, Dokki, Cairo, Egypt

Cancer immunotherapy offers tremendous clinical outcomes in cancer management with the potential to induce sustained remission in patients with refractory disease. One of these immunotherapy modalities is the adoptive transfer of autologous T-cells that are genetically engineered ex vivo to express chimeric antigen receptors (CARs). These receptors can direct T-cells to the surface antigens of tumor cells to initiate an efficient and specific cytotoxic response against tumor cells. This review elucidates the structural features of CAR T-cells and their different generations reaching the recent 4th generation (TRUCK). The step-wise treatment process using CAR T-cell therapy and some of the updated prominent clinical applications of this treatment modality in both hematologic and solid malignancies are also covered in the present review. The success of CAR T-cell therapy is still encountered by several limitations for a widespread clinical application of this treatment modality, these challenges along with the recent innovative strategies that have been developed to overcome such drawbacks, as well as, the approaches and future directions aiming for a commercial low cost CAR T-cell immunotherapy modality, are all covered in the present review.

Keywords: Adoptive T-cell transfer; CAR T-cells; Cancer immunotherapy; Chimeric antigen receptor; Clinical studies; Toxicity management
Conflicts of interest:

The authors have no conflict of interests to declare.

Received: August 30, 2018; Accepted: January 29, 2019; Prepublished online: February 20, 2019; Published: March 19, 2019  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
El-Daly SM, Hussein J. Genetically engineered CAR T-immune cells for cancer therapy: recent clinical developments, challenges, and future directions. J Appl Biomed. 2019;17(1):11. doi: 10.32725/jab.2019.005. PubMed PMID: 34907752.
Download citation

References

  1. Beatty GL, Haas AR, Maus MV, Torigian DA, Soulen MC, Plesa G, et al. (2014). Mesothelin-specific chimeric antigen receptor mRNA-engineered T cells induce anti-tumor activity in solid malignancies. Cancer Immunol Res 2(2): 112-120. DOI: 10.1158/2326-6066.CIR-13-0170. Go to original source... Go to PubMed...
  2. Bonifant CL, Jackson HJ, Brentjens RJ, Curran KJ (2016). Toxicity and management in CAR T-cell therapy. Mol Ther Oncolytics 3: 16011. DOI: 10.1038/mto.2016.11. Go to original source... Go to PubMed...
  3. Brentjens RJ, Davila ML, Riviere I, Park J, Wang X, Cowell LG, et al. (2013). CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci Transl Med 5(177): 177ra38. DOI: 10.1126/scitranslmed.3005930. Go to original source... Go to PubMed...
  4. Brentjens RJ, Rivière I, Park JH, Davila ML, Wang X, Stefanski J, et al. (2011). Safety and persistence of adoptively transferred autologous CD19-targeted T cells in patients with relapsed or chemotherapy refractory B-cell leukemias. Blood 118(18): 4817-4828. DOI: 10.1182/blood-2011-04-348540. Go to original source... Go to PubMed...
  5. Brentjens RJ, Santos E, Nikhamin Y, Yeh R, Matsushita M, La Perle K, et al. (2007). Genetically targeted T cells eradicate systemic acute lymphoblastic leukemia xenografts. Clin Cancer Res 13(18): 5426-5435. DOI: 10.1158/1078-0432.CCR-07-0674. Go to original source... Go to PubMed...
  6. Carpenito C, Milone MC, Hassan R, Simonet JC, Lakhal M, Suhoski MM, et al. (2009). Control of large, established tumor xenografts with genetically retargeted human T cells containing CD28 and CD137 domains. Proc Natl Acad Sci 106(9): 3360-3365. DOI: 10.1073/pnas.0813101106. Go to original source... Go to PubMed...
  7. Cheadle EJ, Gornall H, Baldan V, Hanson V, Hawkins RE, Gilham DE (2014). CAR T cells: Driving the road from the laboratory to the clinic. Immunol Rev 257(1): 91-106. DOI: 10.1111/imr.12126. Go to original source... Go to PubMed...
  8. Chen L, Flies DB (2013). Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat Rev Immunol 13(4): 227-242. DOI: 10.1038/nri3405. Go to original source... Go to PubMed...
  9. Chmielewski M, Abken H (2015). TRUCKs: the fourth generation of CARs. Expert Opin Biol Ther 15(8): 1145-1154. DOI: 10.1517/14712598.2015.1046430. Go to original source... Go to PubMed...
  10. Chmielewski M, Hombach AA, Abken H (2013). Antigen-specific T-cell activation independently of the MHC: Chimeric antigen receptor-redirected T cells. Front Immunol 4: 371. DOI: 10.3389/fimmu.2013.00371. Go to original source... Go to PubMed...
  11. Chmielewski M, Hombach AA, Abken H (2014). Of CARs and TRUCKs: Chimeric antigen receptor (CAR) T cells engineered with an inducible cytokine to modulate the tumor stroma. Immunol Rev 257(1): 83-90. DOI: 10.1111/imr.12125. Go to original source... Go to PubMed...
  12. Chong EA, Melenhorst JJ, Lacey SF, Ambrose DE, Gonzalez V, Levine BL (2017). PD-1 blockade modulates chimeric antigen receptor (CAR)-modified T cells: Refueling the CAR. Blood 129(8): 1039-1041. DOI: 10.1182/blood-2016-09-738245. Go to original source... Go to PubMed...
  13. Choo AY, Shedlock DJ, Muthumani K (2009). Electroporation of cytokines for cancer gene therapy. Cancer Biol Ther 8(22): 2123-2125. DOI: 10.4161/cbt.8.22.10083. Go to original source... Go to PubMed...
  14. Chu Y, Hochberg J, Yahr A, Ayello J, van de Ven C, Barth M, et al. (2015). Targeting CD20+ aggressive B-cell non-hodgkin lymphoma by Anti-CD20 CAR mRNA-modified expanded natural killer cells in vitro and in NSG mice. Cancer Immunol Res 3(4): 333-344. DOI: 10.1158/2326-6066.CIR-14-0114. Go to original source... Go to PubMed...
  15. Couzin-Frankel J (2013). Breakthrough of the year 2013. Cancer immunotherapy. Science 342(6165): 1432-1433. DOI: 10.1126/science.342.6165.1432. Go to original source... Go to PubMed...
  16. Davila ML, Riviere I, Wang X, Bartido S, Park J, Curran K, et al. (2014). Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci Transl Med 6(224): 224ra25. DOI: 10.1126/scitranslmed.3008226. Go to original source... Go to PubMed...
  17. Di Stasi A, De Angelis B, Rooney CM, Zhang L, Mahendravada A, Foster AE, et al. (2009). T lymphocytes coexpressing CCR4 and a chimeric antigen receptor targeting CD30 have improved homing and antitumor activity in a Hodgkin tumor model. Blood 113(25): 6392-6402. DOI: 10.1182/blood-2009-03-209650. Go to original source... Go to PubMed...
  18. Di Stasi A, Tey SK, Dotti G, Fujita Y, Kennedy-Nasser A, Martinez C, et al. (2011). Inducible apoptosis as a safety switch for adoptivecell therapy. N Engl J Med 365(18): 1673-1683. DOI: 10.1056/NEJMoa1106152. Go to original source... Go to PubMed...
  19. Dotti G, Gottschalk S, Savoldo B, Brenner MK (2014). Design and development of therapies using chimeric antigen receptor-expressing T cells. Immunol Rev 257(1): 107-126. DOI: 10.1111/imr.12131. Go to original source... Go to PubMed...
  20. Farkona S, Diamandis EP, Blasutig IM (2016). Cancer immunotherapy: The beginning of the end of cancer? BMC Med 14: 73. DOI: 10.1186/s12916-016-0623-5. Go to original source... Go to PubMed...
  21. Fisher J, Abramowski P, Wisidagamage Don ND, Flutter B, Capsomidis A, Cheung GWK, et al. (2017). Avoidance of on-target off-tumor activation using a co-stimulation-only chimeric antigen receptor. Mol Ther 25(5): 1234-1247. DOI: 10.1016/j.ymthe.2017.03.002. Go to original source... Go to PubMed...
  22. Gattinoni L, Finkelstein SE, Klebanoff CA, Antony PA, Palmer DC, Spiess PJ, et al. (2005). Removal of homeostatic cytokine sinks by lymphodepletion enhances the efficacy of adoptively transferred tumor-specific CD8+ T cells. J Exp Med 202(7): 907-912. DOI: 10.1084/jem.20050732. Go to original source... Go to PubMed...
  23. Gauthier J, Yakoub-Agha I (2017). Chimeric antigen-receptor T-cell therapy for hematological malignancies and solid tumors: Clinical data to date, current limitations and perspectives. Curr Res Transl Med 65(3): 93-102. DOI: 10.1016/j.retram.2017.08.003. Go to original source... Go to PubMed...
  24. Gill S, June CH (2015). Going viral: Chimeric antigen receptor T-cell therapy for hematological malignancies. Immunol Rev 263(1): 68-89. DOI: 10.1111/imr.12243. Go to original source... Go to PubMed...
  25. Gross G, Waks T, Eshhar Z (1989). Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity. Proc Natl Acad Sci 86(24): 10024-10028. DOI: 10.1073/pnas.86.24.10024. Go to original source... Go to PubMed...
  26. Grupp SA, Kalos M, Barrett D, Aplenc R, Porter DL, Rheingold SR, et al. (2013). Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med 368: 1509-1518. DOI: 10.1056/NEJMoa1215134. Go to original source... Go to PubMed...
  27. Hackett PB, Largaespada DA, Switzer KC, Cooper LJN (2013). Evaluating risks of insertional mutagenesis by DNA transposons in gene therapy. Transl Res 161(4): 265-283. DOI: 10.1016/j.trsl.2012.12.005. Go to original source... Go to PubMed...
  28. Hartmann J, Schüßler-Lenz M, Bondanza A, Buchholz CJ (2017). Clinical development of CAR T cells-challenges and opportunities in translating innovative treatment concepts. EMBO Mol Med 9(9): 1183-1197. DOI: 10.15252/emmm.201607485. Go to original source... Go to PubMed...
  29. Haso W, Lee DW, Shah NN, Stetler-Stevenson M, Yuan CM, Pastan IH, et al. (2013). Anti-CD22-chimeric antigen receptors targeting B-cell precursor acute lymphoblastic leukemia. Blood 121(7): 1165-1174. DOI: 10.1182/blood-2012-06-438002. Go to original source... Go to PubMed...
  30. Hatfield SM, Kjaergaard J, Lukashev D, Schreiber TH, Belikoff B, Abbott R, et al. (2015). Immunological mechanisms of the antitumor effects of supplemental oxygenation. Sci Transl Med 7(227): 277ra30. DOI: 10.1126/scitranslmed.aaa1260. Go to original source... Go to PubMed...
  31. Houot R, Schultz LM, Marabelle A, Kohrt H (2015). T-cell-based immunotherapy: Adoptive cell transfer and checkpoint inhibition. Cancer Immunol Res 3(10): 1115-1122. DOI: 10.1158/2326-6066.CIR-15-0190. Go to original source... Go to PubMed...
  32. Jaspers JE, Brentjens RJ (2017). Development of CAR T cells designed to improve antitumor efficacy and safety. Pharmacol Ther 178: 83-91. DOI: 10.1016/j.pharmthera.2017.03.012. Go to original source... Go to PubMed...
  33. John LB, Devaud C, Duong CPM, Yong CS, Beavis PA, Haynes NM, et al. (2013). Anti-PD-1 antibody therapy potently enhances the eradication of established tumors by gene-modified T cells. Clin Cancer Res 19(20): 5636-5646. DOI: 10.1158/1078-0432.CCR-13-0458. Go to original source... Go to PubMed...
  34. Jones BS, Lamb LS, Goldman F, Di Stasi A (2014). Improving the safety of cell therapy products by suicide gene transfer. Front Pharmacol 5: 254. DOI: 10.3389/fphar.2014.00254. Go to original source... Go to PubMed...
  35. Junghans RP, Ma Q, Rathore R, Gomes EM, Bais AJ, Lo AS, et al. (2016). Phase I trial of anti-PSMA designer CAR T-cells in prostate cancer: Possible role for interacting interleukin 2-T cell pharmacodynamics as a determinant of clinical response. Prostate 76(14): 1257-1270. DOI: 10.1002/pros.23214. Go to original source... Go to PubMed...
  36. Kenderian SS, Ruella M, Shestova O, Klichinsky M, Aikawa V, Morrissette JJ, et al. (2015). CD33-specific chimeric antigen receptor T cells exhibit potent preclinical activity againsthuman acute myeloid leukemia. Leukemia 29(8): 1637-1647. DOI: 10.1038/leu.2015.52. Go to original source... Go to PubMed...
  37. Lamers CH, Sleijfer S, van Steenbergen S, van Elzakker P, van Krimpen B, Groot C, et al. (2013). Treatment of metastatic renal cell carcinoma with CAIX CAR-engineered T cells: clinical evaluation and management of on-target toxicity. Mol Ther 21(4): 904-912. DOI: 10.1038/mt.2013.17. Go to original source... Go to PubMed...
  38. Lamers CH, Sleijfer S, Vulto AG, Kruit WH, Kliffen M, Debets R, et al. (2006). Treatment of metastatic renal cell carcinoma with autologous T-lymphocytes genetically retargeted against carbonic anhydrase IX: first clinical experience. J Clin Oncol 24(13): e20-e22. DOI: 10.1200/JCO.2006.05.9964. Go to original source... Go to PubMed...
  39. Li H, Zhao Y (2017). Increasing the safety and efficacy of chimeric antigen receptor T cell therapy. Protein Cell 8(8): 573-589. DOI: 10.1007/s13238-017-0411-9. Go to original source... Go to PubMed...
  40. Li S, Tao Z, Xu Y, Liu J, An N, Wang Y, et al. (2018). CD33 specific chimeric antigen receptor T cells with different costimulators showed potent anti-leukemia efficacy and different phenotype. Hum Gene Ther 29(5): 626-639. DOI: 10.1089/hum.2017.241. Go to original source... Go to PubMed...
  41. Lipowska-Bhalla G, Gilham DE, Hawkins RE, Rothwell DG (2012). Targeted immunotherapy of cancer with CAR T cells: achievements and challenges. Cancer Immunol Immunother 61(7): 953-962. DOI: 10.1007/s00262-012-1254-0. Go to original source... Go to PubMed...
  42. Lo AS, Ma Q, Liu DL, Junghans RP (2010). Anti-GD3 chimeric sFv-CD28/T-cell receptor zeta designer T cells for treatment of metastatic melanoma and other neuroectodermal tumors. Clin Cancer Res 16(10): 2769-2780. DOI: 10.1158/1078-0432.CCR-10-0043. Go to original source... Go to PubMed...
  43. Louis CU, Savoldo B, Dotti G, Pule M, Yvon E, Myers GD, et al. (2011). Antitumor activity and long-term fate of chimeric antigen receptor-positive T cells in patients with neuroblastoma. Blood 118(23): 6050-6056. DOI: 10.1182/blood-2011-05-354449. Go to original source... Go to PubMed...
  44. Maher J, Brentjens RJ, Gunset G, Rivière I, Sadelain M (2002). Human T-lymphocyte cytotoxicity and proliferation directed by a single chimeric TCRζ/CD28 receptor. Nat Biotechnol 20: 70-75. DOI: 10.1038/nbt0102-70. Go to original source... Go to PubMed...
  45. Martyniszyn A, Krahl A-C, André MC, Hombach AA, Abken H (2017). CD20-CD19 bispecific CAR T cells for the treatment of B cell malignancies. Hum Gene Ther 28(12): 1147-1157. DOI: 10.1089/hum.2017.126. Go to original source... Go to PubMed...
  46. Maude SL, Barrett D, Teachey DT, Grupp SA (2014). Managing cytokine release syndrome associated with novel T cell-engaging therapies. Cancer J 20(2): 119-122. DOI: 10.1097/PPO.0000000000000035. Go to original source... Go to PubMed...
  47. Maus MV, June CH (2016). Making better chimeric antigen receptors for adoptive T-cell therapy. Clin Cancer Res 22(8): 1875-1884. DOI: 10.1158/1078-0432.CCR-15-1433. Go to original source... Go to PubMed...
  48. Mayor M, Zeltsman M, McGee E, Adusumilli PS (2016). A regional approach for CAR T-cell therapy for mesothelioma: From mouse models to clinical trial. Immunotherapy 8(5): 491-494. DOI: 10.2217/imt-2016-0008. Go to original source... Go to PubMed...
  49. Milone MC, Fish JD, Carpenito C, Carroll RG, Binder GK, Teachey D, et al. (2009). Chimeric receptors containing CD137 signal transduction domains mediate enhanced survival of T cells and increased antileukemic efficacy in vivo. Mol Ther 17(8): 1453-1464. DOI: 10.1038/mt.2009.83. Go to original source... Go to PubMed...
  50. Minagawa K, Jamil MO, Al-Obaidi M, Pereboeva L, Salzman D, Erba HP, et al. (2016). In vitro pre-clinical validation of suicide gene modified anti-CD33 redirected chimeric antigen receptor T-cells for acute myeloid leukemia. PLoS One 12(2): e0172640. DOI: 10.1371/journal.pone.0166891. Go to original source... Go to PubMed...
  51. Morgan R, Boyerinas B (2016). Genetic modification of T cells. Biomedicines 4(2): E9. DOI: 10.3390/biomedicines4020009. Go to original source... Go to PubMed...
  52. Morgan RA, Yang JC, Kitano M, Dudley ME, Laurencot CM, Rosenberg SA (2010). Case report of a serious adverse event following the administration of t cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol Ther 18(4): 843-851. DOI: 10.1038/mt.2010.24. Go to original source... Go to PubMed...
  53. Morrow T (2017). Novartis's kymriah: Harnessing immune system comes with worry about reining in costs. Manag Care 26(10): 28-30.
  54. Nishio N, Diaconu I, Liu H, Cerullo V, Caruana I, Hoyos V, et al. (2014). Armed oncolytic virus enhances immune functions ofchimeric antigen receptor-modified T cells in solid tumors. Cancer Res 74(18): 5195-5205. DOI: 10.1158/0008-5472.CAN-14-0697. Go to original source... Go to PubMed...
  55. O'Hara M, Stashwick C, Haas AR, Tanyi JL (2016). Mesothelin as a target for chimeric antigen receptor-modified T cells as anticancer therapy. Immunotherapy 8(4): 449-460. DOI: 10.2217/imt.16.4. Go to original source... Go to PubMed...
  56. Parkhurst MR, Yang JC, Langan RC, Dudley ME, Nathan DA, Feldman SA, et al. (2011). T cells targeting carcinoembryonic antigen can mediate regression of metastatic colorectal cancer but induce severe transient colitis. Mol Ther 19(13): 620-626. DOI: 10.1038/mt.2010.272. Go to original source... Go to PubMed...
  57. Pinthus JH, Waks T, Kaufman-Francis K, Schindler DG, Harmelin A, Kanety H, et al. (2003). Immuno-gene therapy of established prostate tumors using chimeric receptor-redirected human lymphocytes. Cancer Res 63(10): 2470-2476.
  58. Porter DL, Levine BL, Kalos M, Bagg A, June CH (2011). Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med 365: 725-733. DOI: 10.1056/NEJMoa1103849. Go to original source... Go to PubMed...
  59. Pule MA, Savoldo B, Myers GD, Rossig C, Russell HV, Dotti G, et al. (2008). Virus-specific T cells engineered to coexpress tumor-specific receptors: Persistence and antitumor activity in individuals with neuroblastoma. Nat Med 14(11): 1264-1270. DOI: 10.1038/nm.1882. Go to original source... Go to PubMed...
  60. Pulè MA, Straathof KC, Dotti G, Heslop HE, Rooney CM, Brenner MK (2005). A chimeric T cell antigen receptor that augments cytokine release and supports clonal expansion of primary human T cells. Mol Ther 12(5): 933-941. DOI: 10.1016/j.ymthe.2005.04.016. Go to original source... Go to PubMed...
  61. Qasim W, Zhan H, Samarasinghe S, Adams S, Amrolia P, Stafford S, et al. (2017). Molecular remission of infant B-ALL after infusion of universal TALEN gene-edited CAR T cells. Sci Transl Med 9(374): eaaj2013. DOI: 10.1126/scitranslmed.aaj2013. Go to original source... Go to PubMed...
  62. Qin L, Lai Y, Zhao R, Wei X, Weng J, Lai P, et al. (2017). Incorporation of a hinge domain improves the expansion of chimeric antigen receptor T cells. J Hematol Oncol 10(1): 68. DOI: 10.1186/s13045-017-0437-8. Go to original source... Go to PubMed...
  63. Ramos CA, Ballard B, Zhang H, Dakhova O, Gee AP, Mei Z, et al. (2017). Clinical and immunological responses after CD30-specific chimeric antigen receptor-redirected lymphocytes. J Clin Invest 127(9): 3462-3471. DOI: 10.1172/JCI94306. Go to original source... Go to PubMed...
  64. Ren J, Liu X, Fang C, Jiang S, June CH, Zhao Y (2017). Multiplex genome editing to generate universal CAR T cells resistant to PD1 inhibition. Clin Cancer Res 23(9): 2255-2266. DOI: 10.1158/1078-0432.CCR-16-1300. Go to original source... Go to PubMed...
  65. Ritchie DS, Neeson PJ, Khot A, Peinert S, Tai T, Tainton K, et al. (2013). Persistence and efficacy of second generation CAR T Cell against the LeY Antigen in acute myeloid leukemia. Mol Ther 21(11): 2122-2129. DOI: 10.1038/mt.2013.154. Go to original source... Go to PubMed...
  66. Sadelain M (2017). CD19 CAR T Cells. Cell 171(7): 1471. DOI: 10.1016/j.cell.2017.12.002. Go to original source... Go to PubMed...
  67. Scarfò I, Maus MV (2017). Current approaches to increase CAR T cell potency in solid tumors: Targeting the tumor microenvironment. J Immunother Cancer 5: 28. DOI: 10.1186/s40425-017-0230-9. Go to original source... Go to PubMed...
  68. Sheen AJ, Sherlock DJ, Irlam J, Hawkins RE, Gilham DE (2003). T lymphocytes isolated from patients with advanced colorectal cancer are suitable for gene immunotherapy approaches. Br J Cancer 88(7): 1119-1127. DOI: 10.1038/sj.bjc.6600857. Go to original source... Go to PubMed...
  69. Shirasu N, Kuroki M (2012). Functional design of chimeric T-cell antigen receptors for adoptive immunotherapy of cancer: Architecture and outcomes. Anticancer Res 32(6): 2377-2383.
  70. Shlomchik DS (2007). Graft-versus-host disease. Nat Rev Immunol 7(5): 340-352. DOI: 10.1038/nri2000. Go to original source... Go to PubMed...
  71. Srivastava S, Riddell SR (2015). Engineering CAR T-cells: Design concepts. Trends Immunol 36(8): 494-502. DOI: 10.1016/j.it.2015.06.004. Go to original source... Go to PubMed...
  72. Stanculeanu DL, Daniela Z, Lazescu A, Bunghez R, Anghel R (2016). Development of new immunotherapy treatments in different cancer types. J Med Life 9(3): 240-248.
  73. Tchou J, Wang LC, Selven B, Zhang H, Conejo-Garcia J, Borghaei H, et al. (2012). Mesothelin, a novel immunotherapy target for triple negative breast cancer. Breast Cancer Res Treat 133(2): 799-804. DOI: 10.1007/s10549-012-2018-4. Go to original source... Go to PubMed...
  74. Teng MW, Kershaw MH, Moeller M, Smyth MJ, Darcy PK (2004). Immunotherapy of cancer using systemically delivered gene-modified human T lymphocytes. Hum Gene Ther 15(7): 699-708. DOI: 10.1089/1043034041361235. Go to original source... Go to PubMed...
  75. Torikai H, Reik A, Liu PQ, Zhou Y, Zhang L, Maiti S, et al. (2012). A foundation for universal T-cell based immunotherapy: T cells engineered to express a CD19-specific chimeric-antigen-receptor and eliminate expression of endogenous TCR. Blood 119(24): 5697-5705. DOI: 10.1182/blood-2012-01-405365. Go to original source... Go to PubMed...
  76. Turtle CJ, Hay KA, Hanafi LA, Li D, Cherian S, Chen X, et al. (2017). Durable molecular remissions in chronic lymphocytic leukemia treated with CD19-Specific chimeric antigen Receptor-modified T cells after failure of ibrutinib. J Clin Oncol 35(26): 3010-3020. DOI: 10.1200/JCO.2017.72.8519. Go to original source... Go to PubMed...
  77. Valton J, Guyot V, Marechal A, Filhol JM, Juillerat A, Duclert A, et al. (2015). A Multidrug-resistant engineered CAR T cell for allogeneic combination immunotherapy. Mol Ther 23(9): 1507-1518. DOI: 10.1038/mt.2015.104. Go to original source... Go to PubMed...
  78. Wang C, Wu Z, Wang Y, Guon YL, Dai H, Wang X-H, et al. (2017). Autologous T cells expressing cd30 chimeric antigen receptors for relapsed or refractory hodgkin lymphoma: An open-label phase I trial. Clin Cancer Res 23(5): 1156-1166. DOI: 10.1158/1078-0432.CCR-16-1365. Go to original source... Go to PubMed...
  79. Wang X, Rivière I (2016). Clinical manufacturing of CAR T cells: Foundation of a promising therapy. Mol Ther Oncolytics 3: 16015. DOI: 10.1038/mto.2016.15. Go to original source... Go to PubMed...
  80. Xu J, Tian K, Zhang H, Li L, Liu H, Liu J, et al. (2017). Chimeric antigen receptor-T cell therapy for solid tumors require new clinical regimens. Expert Rev Anticancer Ther 17(12): 1099-1106. DOI: 10.1080/14737140.2017.1395285. Go to original source... Go to PubMed...
  81. Xu XJ, Tang YM (2014). Cytokine release syndrome in cancer immunotherapy with chimeric antigen receptor engineered T cells. Cancer Lett 343(2): 172-178. DOI: 10.1016/j.canlet.2013.10.004. Go to original source... Go to PubMed...
  82. Yao X, Ahmadzadeh M, Lu Y-C, Liewehr DJ, Dudley ME, Liu F, et al. (2012). Levels of peripheral CD4(+)FoxP3(+) regulatory T cells are negatively associated with clinical response to adoptive immunotherapy of human cancer. Blood 119, 5688-5696. Doi: 10.1182/blood-2011-10-386482 Go to original source... Go to PubMed...
  83. Zhang C, Liu J, Zhong JF, Zhang X (2017). Engineering CAR T-cells. Biomark Res 5: 22. DOI: 10.1186/s40364-017-0102-y. Go to original source... Go to PubMed...
  84. Zhou X, Di Stasi A, Tey SK, Krance RA, Martinez C, Leung KS, et al. (2014). Long-term outcome after haploidentical stem cell transplant and infusion of T cells expressing the inducible caspase 9 safety transgene. Blood 123(25): 3895-3905. DIO: 10.1182/blood-2014-01-551671. Go to original source... Go to PubMed...
  85. Zuccolotto G, Fracasso G, Merlo A, Montagner IM, Rondina M, Bobisse S, et al. (2014). PSMA-specific CAR-engineered T cells eradicate disseminated prostate cancer in preclinical models. PLoS One 9(10): e109427. DOI: 10.1371/journal.pone.0109427. Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.