J Appl Biomed 17:90, 2019 | DOI: 10.32725/jab.2019.003

Pre-treatment with Empagliflozin ameliorates Cisplatin induced acute kidney injury by suppressing apoptosis

Maaly A. Abd Elmaaboud1,*, Ahmed M. Kabel1,2, Mohamed Elrashidy3
1 Tanta University, Faculty of Medicine, Department of Pharmacology, Tanta, Egypt
2 Taif University, College of Pharmacy, Department of Clinical Pharmacy, Taif, Saudi Arabia
3 Tanta University, Faculty of Medicine, Department of Pathology, Tanta, Egypt

Dose-limiting nephrotoxicity restricts Cisplatin use in high therapeutic doses. Empagliflozin showed a reno-protective effect in diabetic nephropathy. We investigated if Empagliflozin can ameliorate Cisplatin nephrotoxicity whether used prophylactically or therapeutically. Forty male Wistar rats were divided into 5 groups: (1) control; (2) Cisplatin-induced nephrotoxicity by single intraperitoneal dose; (3) Empagliflozin was given for 10 days before a single dose of Cisplatin; (4) a single dose of Cisplatin followed by Empagliflozin for 10 days; (5) received Empagliflozin only. Regular assessment of weight was done, biochemical evaluation for serum urea, creatinine, uric acid, albumin, and glucose was performed, kidney tissue nerve growth factor-β (NGF-β) and oxidative stress parameters were measured, kidneys were evaluated histopathologically and immunostained for caspase 3. Cisplatin significantly reduced body weight, NGF-β, and reduced glutathione, elevated urea, creatinine, and malondialdehyde with no effect on other serum biochemical parameters. Histopathologically, there was high acute tubular necrosis (ATN) score with strong immunostaining of caspase 3. The use of Empagliflozin significantly reduced urea and creatinine in both prophylactic and therapeutic, reduced ATN score in the prophylactic group associated with minimal staining of caspase 3 and elevated reduced glutathione. In conclusion, prophylactic Empagliflozin protected against Cisplatin-induced acute kidney injury mainly via anti-apoptotic effect.

Keywords: Apoptosis; Cisplatin; Empagliflozin; Nerve growth factor; Reduced glutathione
Conflicts of interest:

The authors have no conflict of interests to declare.

Received: August 31, 2018; Accepted: January 23, 2019; Prepublished online: February 6, 2019; Published: March 19, 2019  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Abd Elmaaboud MA, Kabel AM, Elrashidy M. Pre-treatment with Empagliflozin ameliorates Cisplatin induced acute kidney injury by suppressing apoptosis. J Appl Biomed. 2019;17(1):90. doi: 10.32725/jab.2019.003. PubMed PMID: 34907751.
Download citation

References

  1. Ali BH, Abdelrahman AM, Al-Salam S, Sudhadevi M, AlMahruqi AS, Al-Husseni IS, et al. (2011). The effect of sildenafil on cisplatin nephrotoxicity in rats. Basic Clin Pharmacol Toxicol 109(4): 300-308. DOI: 10.1111/j.1742-7843.2011.00724.x. Go to original source... Go to PubMed...
  2. Barabas K, Milner R, Lurie D, Adin C (2008). Cisplatin: a review of toxicities and therapeutic applications. Vet Comp Oncol 6(1): 1-18. DOI: 10.1111/j.1476-5829.2007.00142.x. Go to original source... Go to PubMed...
  3. Beutler E, Duron O, Kelly BM (1963). Improved method for the determination of blood glutathione. J Lab Clin Med 61: 882-888.
  4. Bonofiglio R, Antonucci MT, Papalia T, Romeo F, Capocasale G, Caroleo MC, et al. (2007). Nerve growth factor (NGF) and NGF-receptor expression in diseased human kidneys. J Nephrol 20(2): 186-195. Go to PubMed...
  5. Chino Y, Samukawa Y, Sakai S, Nakai Y, Yamaguchi J, Nakanishi T, Tamai I (2014). SGLT2 inhibitor lowers serum uric acid through alteration of uric acid transport activity in renal tubule by increased glycosuria. Biopharm Drug Dispos 35(7): 391-404. DOI: 10.1002/bdd.1909. Go to original source... Go to PubMed...
  6. Crona DJ, Faso A, Nishijima TF, McGraw KA, Galsky MD, Milowsky MI (2017). A systematic review of strategies to prevent cisplatin-induced nephrotoxicity. Oncologist 22(5): 609-619. DOI: 10.1634/theoncologist.2016-0319. Go to original source... Go to PubMed...
  7. Dasari S, Tchounwou PB (2014). Cisplatin in cancer therapy: molecular mechanisms of action. Eur J Pharmacol 740: 364-378. DOI: 10.1016/j.ejphar.2014.07.025. Go to original source... Go to PubMed...
  8. Debnam ES, Smith MW, Sharp PA, Srai SK, Turvey A, Keable SJ (1995). The effects of streptozotocin diabetes on sodium-glucose transporter (SGLT1) expression and function in rat jejunal and ileal villus-attached enterocytes. Pflugers Arch 430(2): 151-159. Go to original source... Go to PubMed...
  9. Duffy EA, Fitzgerald W, Boyle K, Rohatgi R (2018). Nephrotoxicity: Evidence in patients receiving cisplatin therapy. Clin J Oncol Nurs 22(2): 175-183. DOI: 10.1188/18.CJON.175-183. Go to original source... Go to PubMed...
  10. Dugbartey GJ, Peppone LJ, de Graaf IA (2016). An integrative view of cisplatin-induced renal and cardiac toxicities: Molecular mechanisms, current treatment challenges and potential protective measures. Toxicology 371: 58-66. DOI: 10.1016/j.tox.2016.10.001. Go to original source... Go to PubMed...
  11. Fawcett JK, Scott JE (1960). A rapid and precise method for the determination of urea. J Clin Pathol 13(2): 156-159. Go to original source... Go to PubMed...
  12. Fioretto P, Zambon A, Rossato M, Busetto L, Vettor R (2016). SGLT2 Inhibitors and the Diabetic Kidney. Diabetes Care 39(Suppl. 2): S165-S171. DOI: 10.2337/dcS15-3006. Go to original source... Go to PubMed...
  13. Fossati P, Prencipe L, Berti G (1980). Use of 3,5-dichloro-2-hydroxybenzenesulfonic acid/4-aminophenazone chromogenic system in direct enzymic assay of uric acid in serum and urine. Clin Chem 26(2): 227-231. Go to original source...
  14. Hosohata K (2016). Role of oxidative stress in drug-induced kidney injury. Int J Mol Sci 17(11): 1826. DOI: 10.3390/ijms17111826. Go to original source... Go to PubMed...
  15. Humanes B, Lazaro A, Camano S, Moreno-Gordaliza E, Lazaro JA, Blanco-Codesido M, et al. (2012). Cilastatin protects against cisplatin-induced nephrotoxicity without compromising its anticancer efficiency in rats. Kidney Int 82(6): 652-663. DOI: 10.1038/ki.2012.199. Go to original source... Go to PubMed...
  16. Ikari A, Nakano M, Suketa Y, Harada H, Takagi K (2005a). Reorganization of ZO-1 by sodium-dependent glucose transporter activation after heat stress in LLC-PK1 cells. J Cell Physiol 203(3): 471-478. DOI: 10.1002/jcp.20234. Go to original source... Go to PubMed...
  17. Ikari A, Nagatani Y, Tsukimoto M, Harada H, Miwa M, Takagi K (2005b). Sodium-dependent glucose transporter reduces peroxynitrite and cell injury caused by cisplatin in renal tubular epithelial cells. Biochim Biophys Acta 1717(2): 109-117. DOI: 10.1016/j.bbamem.2005.10.003. Go to original source... Go to PubMed...
  18. Kim ES, Lee JS, Akram M, Kim KA, Shin YJ, Yu JH, Bae ON (2015). Protective activity of Dendropanax morbifera against cisplatin-induced acute kidney injury. Kidney Blood Press Res 40(1): 1-12. DOI: 10.1159/000368466. Go to original source... Go to PubMed...
  19. Kusaka H, Koibuchi N, Hasegawa Y, Ogawa H, Kim-Mitsuyama S (2016). Empagliflozin lessened cardiac injury and reduced visceral adipocyte hypertrophy in prediabetic rats with metabolic syndrome. Cardiovasc Diabetol 15(1): 157. DOI: 10.1186/s12933-016-0473-7. Go to original source... Go to PubMed...
  20. Lahnwong S, Chattipakorn SC, Chattipakorn N (2018). Potential mechanisms responsible for cardioprotective effects of sodium-glucose co-transporter 2 inhibitors. Cardiovasc Diabetol 17(1): 101. DOI: 10.1186/s12933-018-0745-5. Go to original source... Go to PubMed...
  21. Lee KA, Jin HY, Lee NY, Kim YJ, Park TS (2018). Effect of empagliflozin, a selective sodium-glucose cotransporter 2 inhibitor, on kidney and peripheral nerves in streptozotocin-induced diabetic rats. Diabetes Metab J 42(4): DOI: 10.4093/dmj.2017.0095. Go to original source... Go to PubMed...
  22. Liu YL, Malik NM, Sanger GJ, Andrews PL (2006). Ghrelin alleviates cancer chemotherapy-associated dyspepsia in rodents. Cancer Chemother Pharmacol 58(3): 326-333. DOI: 10.1007/s00280-005-0179-0. Go to original source... Go to PubMed...
  23. Micera A, Lambiase A, Stampachiacchiere B, Bonini S, Bonini S, Levi-Schaffer F (2007). Nerve growth factor and tissue repair remodeling: trkA(NGFR) and p75(NTR), two receptors one fate. Cytokine Growth Factor Rev 18(3-4): 245-256. DOI: 10.1016/j.cytogfr.2007.04.004. Go to original source... Go to PubMed...
  24. Miller RP, Tadagavadi RK, Ramesh G, Reeves WB (2010). Mechanisms of Cisplatin nephrotoxicity. Toxins 2(11): 2490-2518. DOI: 10.3390/toxins2112490. Go to original source... Go to PubMed...
  25. Neumiller JJ (2014). Empagliflozin: a new sodium-glucose co-transporter 2 (SGLT2) inhibitor for the treatment of type 2 diabetes. Drugs Context 3: 212262. DOI: 10.7573/dic.212262. Go to original source... Go to PubMed...
  26. Ohkawa H, Ohishi N, Yagi K (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95(2): 351-358. DOI: 10.1016/0003-2697(79)90738-3. Go to original source... Go to PubMed...
  27. Peres LA, da Cunha AD, Jr. (2013). Acute nephrotoxicity of cisplatin: molecular mechanisms. J Bras Nefrol 35(4): 332-340. DOI: 10.5935/0101-2800.20130052. Go to original source... Go to PubMed...
  28. Perrone-Filardi P, Avogaro A, Bonora E, Colivicchi F, Fioretto P, Maggioni AP, et al. (2017). Mechanisms linking empagliflozin to cardiovascular and renal protection. Int J Cardiol 241: 450-456. DOI: 10.1016/j.ijcard.2017.03.089. Go to original source... Go to PubMed...
  29. Rieg T, Masuda T, Gerasimova M, Mayoux E, Platt K, Powell DR, et al. (2014). Increase in SGLT1-mediated transport explains renal glucose reabsorption during genetic and pharmacological SGLT2 inhibition in euglycemia. Am J Physiol Renal Physiol 306(2): F188-193. DOI: 10.1152/ajprenal.00518.2013. Go to original source... Go to PubMed...
  30. Rodkey FL (1964). Binding of bromocresol green by human serum albumin. Arch Biochem Biophys 108(3): 510-513. DOI: 10.1016/0003-9861(64)90435-7. Go to original source... Go to PubMed...
  31. Saad SY, Najjar TA, Noreddin AM, Al-Rikabi AC (2001). Effects of gemcitabine on cisplatin-induced nephrotoxicity in rats: schedule-dependent study. Pharmacol Res 43(2): 193-198. DOI: 10.1006/phrs.2000.0764. Go to original source... Go to PubMed...
  32. Sancho-Martínez SM, Prieto-García L, Prieto M, López-Novoa JM, López-Hernández FJ (2012). Subcellular targets of cisplatin cytotoxicity: An integrated view. Pharmacol Ther 136(1): 35-55. DOI: 10.1016/j.pharmthera.2012.07.003. Go to original source... Go to PubMed...
  33. Scott LA, Madan E, Valentovic MA (1989). Attenuation of cisplatin nephrotoxicity by streptozotocin-induced diabetes. Fundam Appl Toxicol 12(3): 530-539. DOI: 10.1016/0272-0590(89)90026-2. Go to original source... Go to PubMed...
  34. Shirali AC, Perazella MA (2014). Tubulointerstitial injury associated with chemotherapeutic agents. Adv Chronic Kidney Dis 21(1): 56-63. DOI: 10.1053/j.ackd.2013.06.010. Go to original source... Go to PubMed...
  35. Silici S, Ekmekcioglu O, Kanbur M, Deniz K (2011). The protective effect of royal jelly against cisplatin-induced renal oxidative stress in rats. World J Urol 29(1): 127-132. DOI: 10.1007/s00345-010-0543-5. Go to original source... Go to PubMed...
  36. ©krtiæ M, Cherney DZ (2015). Sodium-glucose cotransporter-2 inhibition and the potential for renal protection in diabeticnephropathy. Curr Opin Nephrol Hypertens 24(1): 96-103. DOI: 10.1097/MNH.0000000000000084. Go to original source... Go to PubMed...
  37. Szablewski L (2017). Distribution of glucose transporters in renal diseases. J Biomed Sci 24(1): 64. DOI: 10.1186/s12929-017- 0371-7. Go to original source... Go to PubMed...
  38. Taguchi T, Nazneen A, Abid MR, Razzaque MS (2005). Cisplatin-associated nephrotoxicity and pathological events. Contrib Nephrol 148: 107-121. DOI: 10.1159/000086055. Go to original source... Go to PubMed...
  39. Teteris SA, Menahem SA, Perry G, Maguire JA, Dowling JP, Langham RG, et al. (2007). Dysregulated growth factor gene expression is associated with tubulointerstitial apoptosis and renal dysfunction. Kidney Int 71(10): 1044-1053. DOI: 10.1038/sj.ki.5002176. Go to original source... Go to PubMed...
  40. Trinder P (1969). Determination of blood glucose using an oxidase-peroxidase system with a non-carcinogenic chromogen. J Clin Pathol 22(2): 158-161. Go to original source... Go to PubMed...
  41. Varghese F, Bukhari AB, Malhotra R, De A (2014). IHC Profiler: an open source plugin for the quantitative evaluation and automated scoring of immunohistochemistry images of human tissue samples. PLoS One 9(5): e96801. DOI: 10.1371/journal.pone.0096801. Go to original source... Go to PubMed...
  42. Vasiliades J (1976). Reaction of alkaline sodium picrate with creatinine: I. Kinetics and mechanism of formation of the mono-creatinine picric acid complex. Clin Chem 22(10): 1664-1671. Go to original source...
  43. Vizza D, Perri A, Toteda G, Lupinacci S, Leone F, Gigliotti P, et al. (2015). Nerve growth factor exposure promotes tubular epithelial-mesenchymal transition via TGF-beta1 signaling activation. Growth Factors 33(3): 169-180. DOI: 10.3109/08977194.2015.1054989. Go to original source... Go to PubMed...
  44. Wanner C (2017). EMPA-REG OUTCOME: The nephrologist's point of view. Am J Med 130(6S): S63-S72. DOI: 10.1016/j.amjmed.2017.04.007. Go to original source... Go to PubMed...
  45. Xu L, Nagata N, Nagashimada M, Zhuge F, Ni Y, Chen G, et al. (2017). SGLT2 Inhibition by empagliflozin promotes fat utilization and browning and attenuates inflammation and insulin resistance by polarizing M2 macrophages in diet-induced obese mice. EBioMedicine 20: 137-149. DOI: 10.1016/j.ebiom.2017.05.028. Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.