J Appl Biomed 3:1-12, 2005 | DOI: 10.32725/jab.2005.001

Systems dynamics of biology

David Lloyd*
Microbiology Group, Cardiff School of Biosciences, Cardiff University, Cardiff, Wales, U.K.

As more information accumulates on the detailed dynamics of life processes, emphasis on steady state behaviour gives way to the recognition that the organism is a multi-oscillator. Systems biology takes account of the controls and balances on inputs and outputs between the environment and the open system of the functioning organism. The matching of the system to its periodic environment performed by biological clocks (circadian, tidal, lunar, annual) is belatedly acknowledged and exploited in applied biomedicine, even as detailed mechanisms continue to be elucidated. Ancestral shorter-period (ultradian) oscillations, rhythms and clocks are all-pervasive in intracellular regulation and control. Yeast in continuous culture shows all these characteristics as well as population coherence. Temporal organisation of tissues, organs and of the whole organism; its construction, operation and maintenance are extensions of these dynamic principles.

Keywords: circadian rhythms; ultradian rhythms; cell and tissue dynamics

Received: March 22, 2005; Published: March 31, 2005  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Lloyd D. Systems dynamics of biology. J Appl Biomed. 2005;3(1):1-12. doi: 10.32725/jab.2005.001.
Download citation

References

  1. Anon A.: End of the interlude? Nature Biotechnol. 22: 1191-1200, 2004. Go to original source... Go to PubMed...
  2. Aon M.A., Cortessa S., Lloyd D.: Chaotic dynamics and fractal space in biochemistry: simplicity underlies complexity. Cell Biol. Int. 24: 581-587, 2000. Go to original source... Go to PubMed...
  3. Beynon J.R.: The proteome as a dynamic entity - is yesterday's proteome the same as today's? Biochem. Soc. Trans., abstract SA038, 2005.
  4. Brodsky V.J.: Protein synthesis rhythm. J. Theor. Biol. 55:167-200, 1975. Go to original source... Go to PubMed...
  5. Brodsky V.J.: Direct cell-cell communication. A new approach due to recent data on the nature and self organization of ultradian circahoralian intracellular rhythms. Biol. Rev. 80: in press, 2005. Go to original source... Go to PubMed...
  6. Buchner E.: Ber. dent. Chem. Gies. 30: 117-124; 1110-1113, 1898. Go to original source...
  7. Chargaff E.: Heraclitean Fire: Sketches from a life before nature. Rockefeller University Press, New York 1978.
  8. Chernavskii D.S., Palamarchuk E.K., Polexhaev A.A., Solyanik G.I., Burlakova E.B.: Mathematical model of periodic processes in membranes with application to cell cycle regulation. BioSystems 9: 187-193, 1977. Go to original source... Go to PubMed...
  9. Cortassa S., Aon M.A., Iglesias A.A., Lloyd D.: An Introduction to Metabolic and Cellular Engineering. World Scientific, Singapore 2002. Go to original source...
  10. DuPont G., Houart G., Goldbetter A.: From simple to complex Ca2+ oscillations in regulatory mechanisms and theoretical models. In Falke M., Malchow D. (eds), Lecture's in Physics. Understanding Calcium Dynamics Experiments and Theory, pp.131-152.
  11. Edmunds L.N. Jr.: Cellular and Molecular Bases of Biological Clocks. Springer, New York 1988. Go to original source...
  12. Fuentes-Pardo B., Guzman-Gomez A.M., Lara-Aparicio M., Lopez de Medrano S.: A qualitative model of a motor circadian rhythm. BioSystems 71: 61-69, 2003. Go to original source... Go to PubMed...
  13. Gilbert D.A.: Ageing, oscillations and efficiency. BioSystems 36: 1-5, 1995. Go to original source... Go to PubMed...
  14. Gilbert D.A.: The nature of the cell cycle and the control of cell proliferation. BioSystems 5: 197-206, 1974. Go to original source... Go to PubMed...
  15. Gilbert D.A.: The nature of tumour cell proliferation. Nature 311: 160, 1984. Go to original source...
  16. Gonze D., Halloy J., Goldbetter A.: Stochastic models for circadian oscillations: emergence of a biological rhythm. Int. J. Quantum Chem. 98: 228-238, 2004. Go to original source...
  17. Henson M.A.: Modeling the synchronization of yeast respiratory oscillations. J. Theor. Biol. 231: 433-458, 2004. Go to original source... Go to PubMed...
  18. Kimura H.: Hydrogen sulphide as neuromodulator. Mol. Neurobiol. 26: 13-19, 2002. Go to original source... Go to PubMed...
  19. Kitano H.: Systems biology: a brief overview. Science 295: 1662-1664, 2002. Go to original source... Go to PubMed...
  20. Klevecz R.R.: Quantized generation times in mammalian cells as an expression of the cellular clock. Proc. Nat. Acad. Sci. USA. 73: 4012-4016, 1976. Go to original source... Go to PubMed...
  21. Klevecz R.R.: A precise circadian clock from chaotic cell cycle oscillations. In Lloyd D., Rossi E.L. (eds): Ultradian rhythms in life processes: an inquiry into fundamental principles of chronobiology and psychobiology. 1993, pp. 41-70. Go to original source...
  22. Klevecz R.R., Bolen J., Forrest G., Murray D.B.: A genomewide oscillation in transcription gates DNA replication and cell cycle. PNAS 101: 1200-1205, 2004. Go to original source...
  23. Lloyd A.L., Lloyd D.: Hypothesis: the central oscillator of the circadian clock is a controlled chaotic oscillator. BioSystems 29: 77-85, 1993. Go to original source... Go to PubMed...
  24. Lloyd D., Volkov E.I.: Quantized cell cycle times interaction between a relaxation oscillator and ultradian clock pulse. BioSystems 23: 305-310, 1990. Go to original source... Go to PubMed...
  25. Lloyd D.: Circadian and ultradian clock controlled rhythms in unicellular microorganisms. Adv. Microb. Physiol. 39: 292-339, 1998.
  26. Lloyd D.: Effects of uncoupling of mitochondrial energy conservation on the ultradian clock-driven oscillations in Saccharomyces cerevisiae continuous culture. Mitochondrion 3: 139-146, 2003. Go to original source... Go to PubMed...
  27. Lloyd D., Edwards S.W.: Epigenetic oscillations during the cell cycles of lower eukaryotes are coupled to a clock: life's slow dance to the music of time. In Edmunds L. (ed.): Cell Clocks and Cell Cycles. Plenum Press, New York 1984, pp.27-26.
  28. Lloyd D., Rossi E.R.: Epilogue: the unification hypothesis of chronobiology-psychobiology from molecule to mind. In Lloyd D. and Rossi E.L. (eds.): Ultradian rhythms in life processes: an inquiry into fundamental priciples of chronobiology and psychobiology. 1993, pp. 403-405. Go to original source...
  29. Lloyd D., Lloyd A.L., Olsen L.F.: The cell division cycle: a physiologically plausible dynamic model can exhibit chaotic solutions. BioSystems 27: 17-24, 1992. Go to original source... Go to PubMed...
  30. Lloyd D., Murray D.B.: Ultradian metronome: timekeeper for orchestration of cellular coherence. Trends Biochem. Soc. 2005. Go to original source...
  31. Lloyd D., Lemar K.M., Murray D.B. et al.: Yeast ultradian clock monitored in continuous cultures and respiratory oscillations evaluated by laser 2-photon microscopy. VII Latin-American Symp. Chronobiology, Tlaxcala, Mexico 2003.
  32. Lloyd D., Lemar K.M., Salgado L.E.J., Gould T.M., Murray D.B.: Respiratory oscillations in yeast: mitochondrial reactive oxygen species, apoptosis and time; an hypothesis. FEMS Yeast Res. 3: 333-339, 2003. Go to original source... Go to PubMed...
  33. Lloyd D., Poole R.K., Edwards S.W.: The Cell Division Cycle: Temporal Organization and Control of Cellular Growth and Reproduction. Academic Press, London 1982.
  34. Lloyd D., Salgado E.J., Turner M.P., Suller M.T.E., Murray D.B.: Cycles of mitochondrial energization driven by the ultradian clock in a continuous culture of Saccharomyces cerevisiae. Microbiology 148: 3715-3724, 2002. Go to original source... Go to PubMed...
  35. Mackey M.C., Santary M., Selepora P.: A mitotic oscillator with strange attractor and distributions of cell cycle time. In Othmer H. (ed): Nonlinear Oscillations in Biology and Chemistry, vol 66. Springer, Berlin 1986, pp. 34-45. Go to original source...
  36. Mano Y.: Regulation system of protein synthesis in early embryogenesis in Sea Urchin. Biochem Biophys. Res. Commun. 33: 877-882, 1968. Go to original source... Go to PubMed...
  37. Murray D.B., Engelen A.A., Keulers M., Kuriyama H., Lloyd D.: NO+, but not NO, inhibits respiratory oscillations in ethanol grown chemostat cultures of Saccharomyces cerevisiae. Biochem. Soc. Trans. 28: 5339, 1998. Go to original source... Go to PubMed...
  38. Murray D.B., Keulers M., Engelen F., Lloyd D., Kuriyama H.: Involvement of glutathione in the regulation of respiratory oscillations during continuous culture of S. cerevisiae. Microbiology, 145: 2739-2745, 1999. Go to original source... Go to PubMed...
  39. Murray D.B., Klevecz R.R., Lloyd D.: Generation and maintenance of synchrony in Saccharomyces cerevisiae continuous culture. Exp. Cell Res. 287: 10-15, 2003. Go to original source... Go to PubMed...
  40. Murray D.B., Roller S., Kuriyama H., Lloyd D.: Clock control of ultradian respiratory oscillation found during yeast continuous culture. J. Bacteriol. 183: 7253-7259, 2001. Go to original source... Go to PubMed...
  41. Nicholson J.K., Holmes E., Lindon J.C., Wilson I.D.: The challenges of modeling mammalian biocomplexity. Nature Biotechnol. 1268-1274, 2004. Go to original source...
  42. Noble D.: Modeling the heart - from genes to cells to the whole organ. Science 295: 1678-1682, 2002. Go to original source... Go to PubMed...
  43. Noble D.: The heart is already working. Conf. Systems in Biology: Will It Work? Bioch. Soc. Trans., abstract S014, 2005.
  44. Ruoff P., Vinsjevik M., Rensing L.: Temperature compensation in biological oscillators: a challenge for joint experimental and theoretical analysis. Comments Theol. Biol. 5: 361-382, 2000.
  45. Salgado E., Murray D.B., Lloyd D.: Some antidepressant agents (Li+, monoamine oxidase type A inhibitors) perturb the ultradian clock in S. cerevisiae. Biol. Rhythm Res. 33: 351-361, 2002. Go to original source...
  46. Satroutdinov A.D., Kuriyama H., Kobayashi H.: Oscillatory metabolism of Saccharomyces cerevisiae in continuous culture. FEMS Microbiol. Lett. 77: 261-267, 1992. Go to original source... Go to PubMed...
  47. Selkov E.E.: Two alternative self-oscillating stationary states in thiol metabolism - two alternative types of cell division normal and malignant ones (In Russ.). Biofizika 15: 1065-1073, 1970. Go to PubMed...
  48. Sohn H.-Y., Murray D.B., Kuriyama H.: Ultradian oscillation of Saccharomyces cerevisiae during aerobic continuous culture: hydrogen sulphide mediates population synchrony. Yeast 16: 1185-1190, 2000. Go to original source... Go to PubMed...
  49. Strogatz S.H.: From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators. Physica. D 143: 1-20, 2000. Go to original source...
  50. Tyson J.J., Chen K.C., Novak B.: Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. Curr. Opin. Cell Biol. 15: 221-231, 2003. Go to original source... Go to PubMed...
  51. von Bertalanffy L.: Problems of Life, Harper, New York 1952.
  52. Weber G.: In Horizons in Biochemistry and Biophysics, vol 2, Addison-Westley Publishing Company 1976, pp. 163-198. Go to PubMed...
  53. Weiner N.: The Human Use of Human Beings, Doubleday, New York 1954, pp. 96.
  54. Wolf J., Sohn H.-Y., Heinrich R., Kuriyama H.: Mathematical analysis of a mechanism for autonomous metabolic oscillations in continuous cultures of Saccharomyces cerevisiae. FEBS Lett. 499: 230-234, 2001. Go to original source... Go to PubMed...
  55. Wolf J., Becker-Weimann S., Heinrich R.: Analysing the robustness of cellular rhythms. Systems Biol. 2005. Go to original source...
  56. Yates F.E.: Fractal applications in biology: scaling time in biochemical networks. Meth. Enzymol. 210: 636-675, 1992. Go to original source... Go to PubMed...