J Appl Biomed 11:131-141, 2013 | DOI: 10.2478/v10136-012-0019-6

Regulatory effect of β-catenin on proliferation of hair follicle stem cells involves PI3K/Akt pathway

Yi Zhang*, Jin Yu, Chunying Shi, Yun Wang, Jin Yang, Tian Yang
Department of Cell Biology, Third Military Medical University, Chongqing, China

β-catenin signaling is required for hair follicle development and regeneration which are involved in the resuscitation of hair follicle stem cells (HFSCs). To further characterize the role of β-catenin in the regulation of proliferation of HFSCs, the β-catenin expression was measured in the defined stages of hair follicle cycle and the proliferative potency was determined by using an in vitro cell growth assay. Our results showed that activation of β-catenin correlated with HFSCs proliferation, which appeared to be mediated by the nuclear translocation of stabilized β-catenin and the activation of responsible cell cycle genes (cyclin D1 and p21). In addition, PI3K/Akt pathway was also involved in the HFSCs proliferation, partly regulated by β-catenin signaling pathway. These results demonstrate that β-catenin is an essential factor in the regulation of HFSCs proliferation via PI3K/Akt pathway and might be a potential therapeutic target for the regulation of the yield of keratinocytes from HFSCs.

Keywords: β-catenin; hair follicle stem cell; proliferation; PI3K, Akt; cyclin D1; p21

Received: May 29, 2012; Revised: August 28, 2012; Published: July 31, 2013  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Zhang Y, Yu J, Shi C, Wang Y, Yang J, Yang T. Regulatory effect of β-catenin on proliferation of hair follicle stem cells involves PI3K/Akt pathway. J Appl Biomed. 2013;11(3):131-141. doi: 10.2478/v10136-012-0019-6.
Download citation

References

  1. Blanpain C. Impact of beta-catenin signaling pathway on stem cell differentiation in the skin. Med Sci (Paris). 23: 34-36, 2007. Go to original source... Go to PubMed...
  2. Cheng WL, Lin TY, Tseng YH, Chu FH, Chueh PJ, Kuo YH, Wang SY. Inhibitory Effect of Human Breast Cancer Cell Proliferation via p21-Mediated G1 Cell Cycle Arrest by Araliadiol Isolated from Aralia cordata Thunb. Planta Med. 77: 164-168, 2011. Go to original source... Go to PubMed...
  3. Chimge NO, Makeyev AV, Waigel SJ, Enkhmandakh B, Bayarsaihan D. PI3K/Akt-dependent functions of TFII-I transcription factors in mouse embryonic stem cells. J Cell Biochem. 113: 1122-1131, 2012. Go to original source... Go to PubMed...
  4. Cho YS, Bae JM, Chun YS, Chung JH, Jeon YK, Kim IS, Kim MS, Park JW. HIF-1alpha controls keratinocyte proliferation by up-regulating p21(WAF1/Cip1). Biochim Biophys Acta. 1783: 323-333, 2008. Go to original source... Go to PubMed...
  5. Choi EJ. Hesperetin induced G1-phase cell cycle arrest in human breast cancer MCF-7 cells: involvement of CDK4 and p21. Nutr Cancer. 59: 115-119, 2007. Go to original source... Go to PubMed...
  6. Ciraolo E, Morello F, Hirsch E. Present and future of PI3K pathway inhibition in cancer: perspectives and limitations. Curr Med Chem. 18: 2674-2685, 2011. Go to original source... Go to PubMed...
  7. Dvory-Sobol H, Cohen-Noyman E, Kazanov D, Figer A, Birkenfeld S, Madar-Shapiro L, Benamouzig R, Arber N. Celecoxib leads to G2/M arrest by induction of p21 and down-regulation of cyclin B1 expression in a p53-independent manner. Eur J Cancer. 42: 422-426, 2006. Go to original source... Go to PubMed...
  8. Enshell-Seijffers D, Lindon C, Kashiwagi M, Morgan BA. β-catenin activity in the dermal papilla regulates morphogenesis and regeneration of hair. Dev Cell. 18: 633-642, 2010. Go to original source... Go to PubMed...
  9. Fang Y, Yu S, Braley-Mullen H. TGF-β promotes proliferation of thyroid epithelial cells in IFN-γ(-/-) mice by down-regulation of p21 and p27 via AKT pathway. Am J Pathol. 180: 650-660, 2012. Go to original source... Go to PubMed...
  10. Gottardi CJ, Gumbiner BM. Distinct molecular forms of beta-catenin are targeted to adhesive or transcriptional complexes. J Cell Biol. 167: 339-349, 2004. Go to original source... Go to PubMed...
  11. Guo X, Li W, Wang Q, Yang HS. AKT Activation by Pdcd4 Knockdown Up-Regulates Cyclin D1 Expression and Promotes Cell Proliferation. Genes Cancer. 2: 818-828, 2011. Go to original source... Go to PubMed...
  12. Hirsch C, Campano LM, Wöhrle S, Hecht A. Canonical Wnt signaling transiently stimulates proliferation and enhances neurogenesis in neonatal neural progenitor cultures. Exp Cell Res. 313: 572-587, 2007. Go to original source... Go to PubMed...
  13. Hoi CS, Lee SE, Lu SY, McDermitt DJ, Osorio KM, Piskun CM, Peters RM, Paus R, Tumbar T. Runx1 directly promotes proliferation of hair follicle stem cells and epithelial tumor formation in mouse skin. Mol Cell Biol. 30: 2518-2536, 2010. Go to original source... Go to PubMed...
  14. Huelsken J, Vogel R, Erdmann B, Cotsarelis G, Birchmeier W. beta-Catenin controls hair follicle morphogenesis and stem cell differentiation in the skin. Cell. 105: 533-545, 2001. Go to original source... Go to PubMed...
  15. Ito M, Yang Z, Andl T, Cui C, Kim N, Millar SE, Cotsarelis G. Wnt-dependent de novo hair follicle regeneration in adult mouse skin after wounding. Nature. 447: 316-320, 2007. Go to original source... Go to PubMed...
  16. Kamei J, Toyofuku T, Hori M. Negative regulation of p21 by β-catenin/TCF signaling: a novel mechanism by which cell adhesion molecules regulate cell proliferation. Biochem Biophys Res Comm. 312: 380-387, 2003. Go to original source... Go to PubMed...
  17. Kim JS, Kim BS, Kim J, Park CS, Chung IY. The phosphoinositide-3-kinase/Akt pathway mediates the transient increase in Nanog expression during differentiation of F9 cells. Arch Pharm Res. 33: 1117-1125, 2010. Go to original source... Go to PubMed...
  18. Kishimoto J, Burgeson RE, Morgan BA. Wnt signaling maintains the hair-inducing activity of the dermal papilla. Genes Dev. 14: 1181-1185, 2000. Go to original source...
  19. Kobayashi K, Rochat A, Barrandon Y. Segregation of keratinocyte colony-forming cells in the bulge of the rat vibrissa. Proc Natl Acad Sci USA. 90: 7391-7395, 1993. Go to original source... Go to PubMed...
  20. Le Belle JE, Orozco NM, Paucar AA, Saxe JP, Mottahedeh J, Pyle AD, Wu H, Kornblum HI. Proliferative neural stem cells have high endogenous ROS levels that regulate self-renewal and neurogenesis in a PI3K/Akt-dependant manner. Cell Stem Cell. 8: 59-71, 2011. Go to original source... Go to PubMed...
  21. Lee G, Goretsky T, Managlia E, Dirisina R, Singh AP, Brown JB, May R, Yang GY, Ragheb JW, Evers BM, Weber CR, Turner JR et al. Phosphoinositide 3-kinase signaling mediates beta-catenin activation in intestinal epithelial stem and progenitor cells in colitis. Gastroenterology. 139: 869-881, 2010. Go to original source... Go to PubMed...
  22. Liu C, Li Y, Semenov M, Han C, Baeg GH, Tan Y, Zhang Z, Lin X, He X. Control of beta-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell. 108: 837-847, 2002. Go to original source... Go to PubMed...
  23. Lo Celso C, Prowse DM, Watt FM. Transient activation of β-catenin signalling in adult mouse epidermis is sufficient to induce new hair follicles but continuous activation is required to maintain hair follicle tumours. Development. 131: 1787-1799, 2004. Go to original source... Go to PubMed...
  24. MacDonald BT, Tamai K, He X. Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell. 17: 9-26, 2009. Go to original source... Go to PubMed...
  25. Malanchi I, Peinado H, Kassen D, Hussenet T, Metzger D, Chambon P, Huber M, Hohl D, Cano A, Birchmeier W, Huelsken J. Cutaneous cancer stem cell maintenance is dependent on beta-catenin signalling. Nature. 452: 650-653, 2008. Go to original source... Go to PubMed...
  26. Masckauchán TN, Shawber CJ, Funahashi Y, Li CM, Kitajewski J. Wnt/beta-catenin signaling induces proliferation, survival and interleukin-8 in human endothelial cells. Angiogenesis. 8: 43-51, 2005. Go to original source... Go to PubMed...
  27. Oshima H, Rochat A, Kedzia C, Kobayashi K, Barrandon Y. Morphogenesis and renewal of hair follicle from adult multipotene stem cells. Cell. 104: 233-245, 2001. Go to original source... Go to PubMed...
  28. Parrales A, López E, López-Colomé AM. Thrombin activation of PI3K/PDK1/Akt signaling promotes cyclin D1 upregulation and RPE cell proliferation. Biochim Biophys Acta. 1813: 1758-1766, 2011. Go to original source...
  29. Perez-Moreno M, Jamora C, Fuchs E. Sticky business: orchestrating cellular signals at adherens junctions. Cell. 112: 535-548, 2003. Go to original source... Go to PubMed...
  30. Perry JM, He XC, Sugimura R, Grindley JC, Haug JS, Ding S, Li L. Cooperation between both Wnt/{beta}-catenin and PTEN/PI3K/Akt signaling promotes primitive hematopoietic stem cell self-renewal and expansion. Genes Dev. 25: 1928-1942, 2011. Go to original source... Go to PubMed...
  31. Reya T, Clevers H. Wnt signalling in stem cells and cancer. Nature. 434: 843-850, 2005. Go to original source... Go to PubMed...
  32. Rulifson IC, Karnik SK, Heiser PW, ten Berge D, Chen H, Gu X, Taketo MM, Nusse R, Hebrok M, Kim SK. Wnt signaling regulates pancreatic beta cell proliferation. Proc Natl Acad Sci USA. 104: 6247-6252, 2007. Go to original source... Go to PubMed...
  33. Saito T, Oda Y, Yamamoto H, Kawaguchi K, Tanaka K, Matsuda S, Iwamoto Y, Tsuneyoshi M. Nuclear beta-catenin correlates with cyclin D1 expression in spindle and pleomorphic sarcomas but not in synovial sarcoma. Hum Pathol. 37: 689-697, 2006. Go to original source... Go to PubMed...
  34. Sick S, Reinker S, Timmer J, Schlake T. WNT and DKK determine hair follicle spacing through a reaction-diffusion mechanism. Science. 314: 1447-1450, 2006. Go to original source... Go to PubMed...
  35. Suzuki K, Yamaguchi Y, Villacorte M, Mihara K, Akiyama M, Shimizu H, Taketo MM, Nakagata N, Tsukiyama T, Yamaguchi TP, Birchmeier W, Kato S et al. Embryonic hair follicle fate change by augmented beta-catenin through Shh and Bmp signaling. Development. 136: 367-372, 2009. Go to original source... Go to PubMed...
  36. Taylor G, Lehrer MS, Jensen PJ, Sun TT, Lavker RM. Involvement of follicular stem cells in forming not only the follicle but also the epidermis. Cell. 102: 451-461, 2000. Go to original source... Go to PubMed...
  37. Vlad A, Röhrs S, Klein-Hitpass L, Müller O. The first five years of the Wnt targetome. Cell Signal. 20: 795-802, 2008. Go to original source... Go to PubMed...
  38. Xia J, Urabe K, Moroi Y, Koga T, Duan H, Li Y, Furue M. beta-Catenin mutation and its nuclear localization are confirmed to be frequent causes of Wnt signaling pathway activation in pilomatricomas. J Dermatol Sci. 41: 67-75, 2006. Go to original source... Go to PubMed...
  39. Yoshida M, Matsui Y, Iizuka A, Ikarashi Y. G2-phase arrest through p21(WAF1/Cip1) induction and cdc2 repression by gnidimacrin in human hepatoma HLE cells. Anticancer Res. 29: 1349-1354, 2009. Go to PubMed...
  40. Zhang Y, Xiang M, Wang Y, Yan J, Zeng Y, Yu J, Yang T. Bulge cells of human hair follicles: segregation, cultivation and properties. Colloids Surf B Biointerfaces. 47: 50-56, 2006. Go to original source... Go to PubMed...
  41. Zhang Y, Andl T, Yang SH, Teta M, Liu F, Seykora JT, Tobias JW, Piccolo S, Schmidt-Ullrich R, Nagy A, Taketo MM, Dlugosz AA, Millar SE. Activation of beta-catenin signaling programs embryonic epidermis to hair follicle fate. Development. 135: 2161-2172, 2008. Go to original source... Go to PubMed...
  42. Zhou BP, Deng J, Xia W, Xu J, Li YM, Gunduz M, Hung MC. Dual regulation of Snail by GSK-3beta-mediated phosphorylation in control of epithelial-mesenchymal transition, Nature Cell Biol. 6: 931-940, 2004. Go to original source... Go to PubMed...