J Appl Biomed 16:34-39, 2018 | DOI: 10.1016/j.jab.2017.10.003

miR-214 and miR-126 were associated with restoration of endothelial function in obesity after exercise and dietary intervention

Shen Wanga,b,c, Jingwen Liaob, Junhao Huangb, Honggang Yina,b, Weiyue Yangb,c, Min Hub,c,*
a Shanghai University of Sport, School of Kinesiology, Shanghai, China
b Guangzhou Sport University, Scientific Research Center, Guangdong Provincial Key Laboratory of Sports and Health Promotion, Guangzhou, China
c Guangzhou Sport University, Department of Sports and Health, Guangzhou, China

Obesity would result in increased cardiovascular morbidity including endothelial destruction, and miRNAs are recognized as potent regulators on endothelial function. We therefore explored pivotal miRNAs before and after exercise and dietary intervention in obese adults and examined their potential relationships with selected endothelial function and biomarkers. Obese adults were included in an exercise and dietary intervention training program for 2 months. At the beginning and the end, measurements of anthropometric and metabolic parameters were performed. Flow-mediated dilation, endothelial related biochemicals and circulating miR-214 and miR-126 levels were also determined. Results showed that circulating miR-214 and miR-126 levels were significantly enhanced (P < 0.05) by exercise and dietary intervention along with improved endothelial function. The relationship between relative changes of miR-214 and that of endothelial progenitor cells was significant (r = 0.589, P < 0.05); relative expression of miR-126 was also significantly (r = 0.433, P < 0.05) correlated with endothelial nitric oxide synthase. The intervention lead to upregulation of circulating miR-214 and miR-126 in obesity, and these molecular adaptations are associated with improved endothelial function during the restoring process.

Keywords: miRNA; Obesity; Endothelial function; Exercise; Diet

Received: March 23, 2017; Revised: June 14, 2017; Accepted: October 12, 2017; Published: February 1, 2018  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Wang S, Liao J, Huang J, Yin H, Yang W, Hu M. miR-214 and miR-126 were associated with restoration of endothelial function in obesity after exercise and dietary intervention. J Appl Biomed. 2018;16(1):34-39. doi: 10.1016/j.jab.2017.10.003.
Download citation

References

  1. Avogaro, A., de Kreutzenberg, S.V., 2005. Mechanisms of endothelial dysfunction in obesity. Clin. Chim. Acta 360, 9-26. Go to original source... Go to PubMed...
  2. Chan, L.S., Yue, P.Y., Mak, N.K., Wong, R.N., 2009. Role of microRNA-214 in ginsenoside-Rg1-induced angiogenesis. Eur. J. Pharm. Sci. 38, 370-377. Go to original source... Go to PubMed...
  3. Chen, L., Wang, J., Wang, B., Yang, J., Gong, Z., Zhao, X., et al., 2016. MiR-126 inhibits vascular endothelial cell apoptosis through targeting PI3K/Akt signalling. Ann. Hematol. 95, 365-374. Go to original source... Go to PubMed...
  4. Duan, Q., Yang, L., Gong, W., Chaugai, S., Wang, F., Chen, C., et al., 2015. MicroRNA-214 is upregulated in heart failure patients and suppresses XBP1-mediated endothelial cells angiogenesis. J. Cell. Physiol. 230, 1964-1973. Go to original source... Go to PubMed...
  5. Fernandes, T., Magalhaes, F.C., Roque, F.R., Phillips, M.I., Oliveira, E.M., 2012. Exercise training prevents the microvascular rarefaction in hypertension balancing angiogenic and apoptotic factors: role of microRNAs-16 -21, and -126. Hypertension 59, 513-520. Go to original source... Go to PubMed...
  6. Fish, J.E., Santoro, M.M., Morton, S.U., Yu, S., Yeh, R.F., Wythe, J.D., et al., 2008. miR-126 regulates angiogenic signalling and vascular integrity. Dev. Cell 15, 272-284. Go to original source... Go to PubMed...
  7. Forstemann, K., Horwich, M.D., Wee, L., Tomari, Y., Zamore, P.D., 2007. Drosophila microRNAs are sorted into functionally distinct argonaut complexes after production by dicer-1. Cell 130, 287-297. Go to original source... Go to PubMed...
  8. Fukushima, Y., Nakanishi, M., Nonogi, H., Goto, Y., Iwai, N., 2011. Assessment of plasma miRNAs in congestive heart failure. Circ. J. 75, 336-340. Go to original source... Go to PubMed...
  9. Grimson, A., Farh, K.K., Johnston, W.K., Garrett-Engele, P., Lim, L.P., Bartel, D.P., 2007. MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol. Cell 27, 91-105. Go to original source... Go to PubMed...
  10. Hamdy, O., Ledbury, S., Mullooly, C., Jarema, C., Porter, S., Ovalle, K., et al., 2003. Lifestyle modification improves endothelial function in obese subjects with the insulin resistance syndrome. Diab. Care 26, 2119-2125. Go to original source... Go to PubMed...
  11. Hansen, T.W., Folkvord, A., Grotan, E., Saele, O., 2013. Genetic ontogeny of pancreatic enzymes in Labrus bergylta larvae and the effect of feed type on enzyme activities and gene expression. Comp. Biochem. Physiol. B: Biochem. Mol. Biol. 164, 176-184. Go to original source... Go to PubMed...
  12. Harris, T.A., Yamakuchi, M., Ferlito, M., Mendell, J.T., Lowenstein, C.J., 2008. MicroRNA-126 regulates endothelial expression of vascular cell adhesion molecule 1. Proc. Natl. Acad. Sci. U. S. A. 105, 1516-1521. Go to original source... Go to PubMed...
  13. Heishima, K., Mori, T., Ichikawa, Y., Sakai, H., Kuranaga, Y., Nakagawa, T., et al., 2015. MicroRNA-214 and MicroRNA-126 are potential biomarkers for malignant endothelial proliferative diseases. Int. J. Mol. Sci. 16, 25377-25391. Go to original source... Go to PubMed...
  14. Jakob, P., Doerries, C., Briand, S., Mocharla, P., Krankel, N., Besler, C., et al., 2012. Loss of angiomiR-126 and 130a in angiogenic early outgrowth cells from patients with chronic heart failure: role for impaired in vivo neovascularization and cardiac repair capacity. Circulation 126, 2962-2975. Go to original source... Go to PubMed...
  15. Jansen, F., Yang, X., Hoelscher, M., Cattelan, A., Schmitz, T., Proebsting, S., et al., 2013. Endothelial microparticle-mediated transfer of MicroRNA-126 promotes vascular endothelial cell repair via SPRED1 and is abrogated in glucose-damaged endothelial microparticles. Circulation 128, 2026-2038. Go to original source... Go to PubMed...
  16. Jin, Y., Yang, C.J., Xu, X., Cao, J.N., Feng, Q.T., Yang, J., 2015. MiR-214 regulates the pathogenesis of patients with coronary artery disease by targeting VEGF. Mol. Cell. Biochem. 402, 111-122. Go to original source... Go to PubMed...
  17. Lewis, B.P., Burge, C.B., Bartel, D.P., 2005. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 15-20. Go to original source... Go to PubMed...
  18. Li, K., Zhang, J., Yu, J., Liu, B., Guo, Y., Deng, J., et al., 2015. MicroRNA-214 suppresses gluconeogenesis by targeting activating transcriptional factor 4. J. Biol. Chem. 290, 8185-8195. Go to original source... Go to PubMed...
  19. Liu, P.Y., Tian, Y., Xu, S.Y., 2014. Mediated protective effect of electro acupuncture pre-treatment by miR-214 on myocardial ischemia/reperfusion injury. J. Geriatr. Cardiol. 11, 303-310. Go to PubMed...
  20. Loomans, C.J., de Koning, E.J., Staal, F.J., Rookmaaker, M.B., Verseyden, C., de Boer, H. C., et al., 2004. Endothelial progenitor cell dysfunction: a novel concept in the pathogenesis of vascular complications of type 1 diabetes. Diabetes 53, 195-199. Go to original source... Go to PubMed...
  21. Mahmud, F.H., Hill, D.J., Cuerden, M.S., Clarson, C.L., 2009. Impaired vascular function in obese adolescents with insulin resistance. J. Pediatr. 155, 678-682. Go to original source... Go to PubMed...
  22. Melo, S.F., Barauna, V.G., Neves, V.J., Fernandes, T., Lara Lda, S., Mazzotti, D.R., Oliveira, E.M., 2015. Exercise training restores the cardiac microRNA-1 and -214 levels regulating Ca2+ handling after myocardial infarction. BMC Cardiovasc. Disord. 15, 166. Go to original source... Go to PubMed...
  23. Memczak, S., Jens, M., Elefsinioti, A., Torti, F., Krueger, J., Rybak, A., et al., 2013. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495, 333-338. Go to original source... Go to PubMed...
  24. Meng, S., Cao, J.T., Zhang, B., Zhou, Q., Shen, C.X., Wang, C.Q., 2012. Downregulation of microRNA-126 in endothelial progenitor cells from diabetes patients impairs their functional properties via target gene Spred-1. J. Mol. Cell. Cardiol. 53, 64-72. Go to original source... Go to PubMed...
  25. Meyer, A.A., Kundt, G., Lenschow, U., Schuff-Werner, P., Kienast, W., 2006. Improvement of early vascular changes and cardiovascular risk factors in obese children after a six-month exercise program. J. Am. Coll. Cardiol. 48, 1865-1870. Go to original source... Go to PubMed...
  26. Olivieri, F., Bonafe, M., Spazzafumo, L., Gobbi, M., Prattichizzo, F., Recchioni, R., et al., 2014. Age- and glycemia-related miR-126-3p levels in plasma and endothelial cells. Aging (Albany NY) 6, 771-787. Go to original source... Go to PubMed...
  27. Ortega, F.J., Mercader, J.M., Catalan, V., Moreno-Navarrete, J.M., Pueyo, N., Sabater, M., et al., 2013. Targeting the circulating microRNA signature of obesity. Clin. Chem. 59, 781-792. Go to original source... Go to PubMed...
  28. Poissonnier, L., Villain, G., Soncin, F., Mattot, V., 2014. miR126-5p repression of ALCAM and SetD5 in endothelial cells regulates leucocyte adhesion and transmigration. Cardiovasc. Res. 102, 436-447. Go to original source... Go to PubMed...
  29. Potus, F., Graydon, C., Provencher, S., Bonnet, S., 2014. Vascular remodelling process in pulmonary arterial hypertension, with focus on miR-204 and miR-126 (2013 Grover Conference series). Pulm. Circ. 4, 175-184. Go to original source... Go to PubMed...
  30. Rippe, C., Blimline, M., Magerko, K.A., Lawson, B.R., LaRocca, T.J., Donato, A.J., Seals, D.R., 2012. MicroRNA changes in human arterial endothelial cells with senescence: relation to apoptosis, eNOS and inflammation. Exp. Gerontol. 47, 45-51. Go to original source... Go to PubMed...
  31. Shilo, S., Roy, S., Khanna, S., Sen, C.K., 2008. Evidence for the involvement of miRNA in redox regulated angiogenic response of human microvascular endothelial cells. Arterioscler. Thromb. Vasc. Biol. 28, 471-477. Go to original source... Go to PubMed...
  32. Thijssen, D.H., Black, M.A., Pyke, K.E., Padilla, J., Atkinson, G., Harris, R.A., et al., 2011. Assessment of flow-mediated dilation in humans: a methodological and physiological guideline. Am. J. Physiol. Heart Circ. Physiol. 300, H2-12. Go to original source... Go to PubMed...
  33. Tounian, P., Aggoun, Y., Dubern, B., Varille, V., Guy-Grand, B., Sidi, D., et al., 2001. Presence of increased stiffness of the common carotid artery and endothelial dysfunction in severely obese children: a prospective study. Lancet 358, 1400-1404. Go to original source... Go to PubMed...
  34. Uhlemann, M., Mobius-Winkler, S., Fikenzer, S., Adam, J., Redlich, M., Mohlenkamp, S., et al., 2014. Circulating microRNA-126 increases after different forms of endurance exercise in healthy adults. Eur. J. Prev. Cardiol. 21, 484-491. Go to original source... Go to PubMed...
  35. van Balkom, B.W., de Jong, O.G., Smits, M., Brummelman, J., den Ouden, K., de Bree, P. M., et al., 2013. Endothelial cells require miR-214 to secrete exosomes that suppress senescence and induce angiogenesis in human and mouse endothelial cells. Blood 121, 3997-4006. Go to original source... Go to PubMed...
  36. van Mil, A., Grundmann, S., Goumans, M.J., Lei, Z., Oerlemans, M.I., Jaksani, S., et al., 2012. MicroRNA-214 inhibits angiogenesis by targeting quaking and reducing angiogenic growth factor release. Cardiovasc. Res. 93, 655-665. Go to original source... Go to PubMed...
  37. Van Craenenbroeck, E.M., Conraads, V.M., Van Bockstaele, D.R., Haine, S.E., Vermeulen, K., Van Tendeloo, V.F., et al., 2008. Quantification of circulating endothelial progenitor cells: a methodological comparison of six flow cytometric approaches. J. Immunol. Methods 332, 31-40. Go to original source... Go to PubMed...
  38. Wan, D.Y., Zhang, Z., Yang, H.H., 2015. Cardioprotective effect of miR-214 in myocardial ischemic postconditioning by down-regulation of hypoxia inducible factor 1, alpha subunit inhibitor. Cell Mol. Biol. (Noisy-le-grand) 61, 1-6.
  39. Wang, S., Aurora, A.B., Johnson, B.A., Qi, X., McAnally, J., Hill, J.A., et al., 2008. The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Dev. Cell 15, 261-271. Go to original source... Go to PubMed...
  40. Wang, Y., Huang, J., Yang, T., 2015. Circulating miR-214 level and its correlation with the extent of coronary lesion in patients with acute myocardial infarction. Zhong Nan Da Xue Xue Bao Yi Xue Ban 40, 362-366.
  41. Wang, X., Shen, E., Wang, Y., Li, J., Cheng, D., Chen, Y., et al., 2016. Cross talk between miR-214 and PTEN attenuates glomerular hypertrophy under diabetic conditions. Sci. Rep. 6, 31506. Go to original source... Go to PubMed...
  42. Wei, Y., Nazari-Jahantigh, M., Neth, P., Weber, C., Schober, A., 2013. MicroRNA-126, -145, and -155: a therapeutic triad in atherosclerosis? Arterioscler. Thromb. Vasc. Biol. 33, 449-454. Go to original source... Go to PubMed...
  43. Woo, K.S., Chook, P., Yu, C.W., Sung, R.Y., Qiao, M., Leung, S.S., et al., 2004. Effects of diet and exercise on obesity-related vascular dysfunction in children. Circulation 109, 1981-1986. Go to original source... Go to PubMed...
  44. Yang, Z., Chen, S., Luan, X., Li, Y., Liu, M., Li, X., et al., 2009. MicroRNA-214 is aberrantly expressed in cervical cancers and inhibits the growth of HeLa cells. IUBMB Life 61, 1075-1082. Go to original source... Go to PubMed...
  45. Zampetaki, A., Kiechl, S., Drozdov, I., Willeit, P., Mayr, U., Prokopi, M., et al., 2010. Plasma microRNA profiling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes. Circ. Res. 107, 810-817. Go to original source... Go to PubMed...
  46. Zhang, J.G., Wang, J.J., Zhao, F., Liu, Q., Jiang, K., Yang, G.H., 2010. MicroRNA-21 (miR-21) represses tumour suppressor PTEN and promotes growth and invasion in nonsmall cell lung cancer (NSCLC). Clin. Chim. Acta 411, 846-852. Go to original source... Go to PubMed...