J Appl Biomed 16:75-80, 2018 | DOI: 10.1016/j.jab.2017.11.006

Apigenin inhibits ethanol-induced oxidative stress and LPS-induced inflammatory cytokine production in cultured rat hepatocytes

Feng Wanga, Rui-Jun Zhoua, Xi Zhaoa,b, Hua Yec, Mei-Lin Xiea,*
a Soochow University, College of Pharmaceutical Sciences, Department of Pharmacology, Suzhou, Jiangsu Province, China
b Nantong University, School of Pharmacy, Department of Pharmaceutical Laboratory, Nantong, Jiangsu Province, China
c Leiyunshang Pharmaceutical Co., Ltd., Suzhou, Jiangsu Province, China

Apigenin is a natural flavonoid compound that has antioxidative, anti-inflammatory, and hepatoprotective effects, but the underlying mechanisms are still unclear. In this study, the effects of apigenin on ethanol-induced oxidative stress and lipopolysaccharide (LPS)-induced inflammatory cytokine production were examined in cultured rat hepatocytes. Following pretreatment of ethanol-stimulated hepatocytes with apigenin 6-24 mM for 2 h, the levels of cytochrome P450 2E1 (CYP2E1) protein expression and supernatant alanine aminotransferase and malondialdehyde were reduced (P < 0.05 or P < 0.01), while the activities of glutathione reductase and glutathione peroxidase were increased (P < 0.05 or P < 0.01). Likewise, the pretreatment of LPS-stimulated hepatocytes with the same concentrations of apigenin could decrease the levels of nuclear factor-κB protein expression and supernatant tumor necrosis factor-α and interleukin-6 (P < 0.05 or P < 0.01), and increase the level of IκB-α protein expression (P < 0.05 or P < 0.01). In all of these results, the concentration of 24 μM was the most effective. These findings demonstrate that apigenin may exert an inhibitory effect on ethanol-induced oxidative stress and LPS-induced inflammation in the cultured hepatocytes, and its mechanisms may be related to the reduction of CYP2E1 expression, increment of antioxidative ability, and regulation of inflammatory gene expression.

Keywords: Apigenin; CYP2E1; Hepatocytes; Inflammatory cytokines; Oxidative stress

Received: April 24, 2017; Revised: July 31, 2017; Accepted: November 24, 2017; Published: February 1, 2018  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Wang F, Zhou R, Zhao X, Ye H, Xie M. Apigenin inhibits ethanol-induced oxidative stress and LPS-induced inflammatory cytokine production in cultured rat hepatocytes. J Appl Biomed. 2018;16(1):75-80. doi: 10.1016/j.jab.2017.11.006.
Download citation

References

  1. Albano, E., 2006. Alcohol, oxidative stress and free radical damage. Proc. Nutr. Soc. 65 (3), 278-290. Go to original source... Go to PubMed...
  2. Aroor, A.R., Roy, L.J., Restrepo, R.J., Mooney, B.P., Shukla, S.D., 2012. A proteomic analysis of liver after ethanol binge in chronically ethanol treated rats. Proteome. Sci. 10 (1), 29. Go to original source... Go to PubMed...
  3. Baeuerle, P.A., 1991. The inducible transcription activator NF-kappa B: regulation by distinct protein subunits. Biochim. Biophys. Acta 1072 (1), 63-80. Go to original source... Go to PubMed...
  4. Cederbaum, A.I., 2010. Role of CYP2E1 in ethanol-induced oxidant stress, fatty liver and hepatotoxicity. Dig. Dis. 28 (6), 802-811. Go to original source... Go to PubMed...
  5. Cui, Y., Wang, X., Xue, J., Liu, J., Xie, M., 2014. Chrysanthemum morifolium extract attenuates high-fat milk-induced fatty liver through peroxisome proliferator-activated receptor alpha-mediated mechanism in mice. Nutr. Res. 34 (3), 268-275. Go to original source... Go to PubMed...
  6. Das, S.K., Vasudevan, D.M., 2007. Alcohol-induced oxidative stress. Life Sci. 81 (3), 177-187. Go to original source... Go to PubMed...
  7. Gloire, G., Piette, J., 2009. Redox regulation of nuclear post-translational modifications during NF-kappa B activation. Antioxid. Redox. Signal. 11 (9), 2209-2222. Go to original source... Go to PubMed...
  8. Hojo, Y., Saito, Y., Tanimoto, T., Hoefen, R.J., Baines, C.P., Yamamoto, K., Haendeler, J., Asmis, R., Berk, B.C., 2002. Fluid shear stress attenuates hydrogen peroxide-induced c-Jun NH2-terminal kinase activation via a glutathione reductase-mediated mechanism. Circ. Res. 91 (8), 712-718. Go to original source... Go to PubMed...
  9. Kanarek, N., Ben-Neriah, Y., 2012. Regulation of NF-kB by ubiquitination and degradation of the IkBs. Immunol. Rev. 246 (1), 77-94. Go to original source... Go to PubMed...
  10. Kang, O.H., Lee, J.H., Kwon, D.Y., 2011. Apigenin inhibits release of inflammatory mediators by blocking the NF-kappa B activation pathways in the HMC-1 cells. Immunopharmacol. Immunotoxicol. 33 (3), 473-479. Go to original source... Go to PubMed...
  11. Kretzschmar, M., 1996. Regulation of hepatic glutathione metabolism and its role in hepatotoxicity. Exp. Toxicol. Pathol. 48 (5), 439-446. Go to original source... Go to PubMed...
  12. Lu, Y., Cederbaum, A.I., 2008. CYP2E1 and oxidative liver injury by alcohol. Free Radic. Biol. Med. 44 (5), 723-738. Go to original source... Go to PubMed...
  13. Nanji, A.A., Jokelainen, K., Rahemtulla, A., Miao, L., Fogt, F., Matsumoto, H., Tahan, S. R., Su, G.L., 1999. Activation of nuclear factor kappa B and cytokine imbalance in experimental alcoholic liver disease in the rat. Hepatology 30 (4), 934-943. Go to original source... Go to PubMed...
  14. Neuman, M.G., Malnick, S., Maor, Y., Nanau, R.M., Melzer, E., Ferenci, P., Seitz, H.K., Mueller, S., Mell, H., Samuel, D., Cohen, L.B., Kharbanda, K.K., Osna, N.A., Ganesan, M., Thompson, K.J., McKillop, I.H., Bautista, A., Bataller, R., French, S.W., 2015. Alcoholic liver disease: clinical and translational research. Exp. Mol. Pathol. 99 (3), 596-610. Go to original source... Go to PubMed...
  15. Ning, B., Bai, M.J., Shen, W., 2011. Reduced glutathione protects human hepatocytes from palmitate-mediated injury by suppressing endoplasmic reticulum stress response. Hepato-Gastroenterol. 58 (110), 1670-1679. Go to original source... Go to PubMed...
  16. Park, J.H., Lee, D.H., Park, M.S., Jung, Y.S., Hong, J.T., 2017. CCR5 deficiency exacerbates alcoholic fatty liver disease through pro-inflammatory cytokines and chemokines-induced hepatic inflammation. J. Gastroenterol. Hepatol. 32 (6), 1258-1264. doi:http://dx.doi.org/10.1111/jgh.13657. Go to original source... Go to PubMed...
  17. Parola, M., Robino, G., 2001. Oxidative stress-related molecules and liver fibrosis. J. Hepatol. 35 (2), 297-306. Go to original source... Go to PubMed...
  18. Radosavljevic, T., Mladenovic, D., Vucevic, D., 2009. The role of oxidative stress in alcoholic liver injury. Med. Pregl. 62 (11-12), 547-553. Go to original source... Go to PubMed...
  19. Torok, N.J., 2016. Dysregulation of redox pathways in liver fibrosis. Am. J. Physiol. Gastrointest. Liver Physiol. 311 (4), G667-G674. Go to original source... Go to PubMed...
  20. Tsanova-Savova, S., Ribarova, F., 2013. Flavonols and flavones in some Bulgarian plant foods. Pol. J. Food Nutr. Sci. 63 (3), 173-177. Go to original source...
  21. Wang, X.L., Shang, X., Cui, Y., Zhao, X., Zhang, Y., Xie, M.L., 2015. Osthole inhibits inflammatory cytokine release through PPARa/g-mediated mechanisms in LPS-stimulated 3T3-L1 adipocytes. Immunopharmacol. Immunotoxicol. 37 (2), 185-192. Go to original source... Go to PubMed...
  22. Wang, H., Zhang, Y., Bai, R., Wang, M., Du, S., 2016. Baicalin attenuates alcoholic liver injury through modulation of hepatic oxidative stress, inflammation and sonic hedgehog pathway in rats. Cell Physiol. Biochem. 39 (3), 1129-1140. Go to original source... Go to PubMed...
  23. Xu, X., Li, M., Chen, W., Yu, H., Yang, Y., Hang, L., 2016. Apigenin attenuates oxidative injury in ARPE-19 cells thorough activation of Nrf2 pathway. Oxid. Med. Cell. Longev. 4378461. Go to original source...
  24. Yin, M., Wheeler, M.D., Kono, H., Bradford, B.U., Gallucci, R.M., Luster, M.I., Thurman, R.G., 1999. Essential role of tumor necrosis factor alpha in alcohol-induced liver injury in mice. Gastroenterology 117 (4), 942-952. Go to original source... Go to PubMed...
  25. Zhang, Q., Zhou, M.M., Chen, P.L., Cao, Y.Y., Tan, X.L., 2011. Optimization of ultrasonic-assisted enzymatic hydrolysis for the extraction of luteolin and apigenin from celery. J. Food Sci. 76 (5), C680-C685. Go to original source... Go to PubMed...
  26. Zhang, W., Hong, R.T., Tian, T.L., 2013. Silymarin's protective effects and possible mechanisms on alcoholic fatty liver for rats. Biomol. Ther. 21 (4), 264-269. Go to original source... Go to PubMed...
  27. Zhou, X., Wang, F., Zhou, R.J., Song, X.M., Xie, M.L., 2017. Apigenin: A current review on its beneficial biological activities. J. Food Biochem. 41 (4), e12376. doi:http://dx.doi.org/10.1111/jfbc.12376. Go to original source...