J Appl Biomed 22:115-122, 2024 | DOI: 10.32725/jab.2024.013

RT-qPCR investigation of post-mortem tissues during COVID-19

Zhanna Berdygulova1, 2, *, Elina Maltseva1, 2, 3, *, Yuliya Perfilyeva1, 2, Anna Nizkorodova1, 2, Andrey Zhigailov1, 2, Dinara Naizabayeva1, 2, 3, Yekaterina O. Ostapchuk1, 2, Saltanat Kuatbekova1, Zhaniya Dosmagambet1, 4, Moldir Kuatbek1, 4, Akerke Bissenbay1, 2, Alena Cherusheva1, Akzhigit Mashzhan1, Nurshat Abdolla1, 2, Sanzhar Ashimbekov4, Gulnara Ismagulova1, 2, Andrey Dmitrovskiy1, Seidigapbar Mamadaliyev1, Yuriy Skiba1, 2, 3
1 Almaty Branch of the National Center for Biotechnology, Central Reference Laboratory, Almaty, Kazakhstan
2 M. A. Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
3 Tethys Scientific Society, Almaty, Kazakhstan
4 Asfendiyarov Kazakh National Medical University, Almaty, Kazakhstan

In 2020, there were numerous cases in Kazakhstan with clinical symptoms of COVID-19 but negative PCR results in nasopharyngeal and oropharyngeal swabs. The diagnosis was confirmed clinically and by CT scans (computed tomography). The problem with such negative PCR results for SARS-CoV-2 infection confirmation still exists and indicates the need to confirm the diagnosis in the bronchoalveolar lavage in such cases. There is also a lack of information about confirmation of SARS-CoV-2 infection in deceased patients. In this study, various tissue materials, including lungs, bronchi, and trachea, were examined from eight patients who died, presumably from SARS-CoV-2 infection, between 2020 and 2022. Naso/oropharyngeal swabs taken from these patients in hospitals tested PCR negative for SARS-CoV-2. This study presents a modified RNA isolation method based on a comparison of the most used methods for RNA isolation in laboratories: QIAamp Viral RNA Mini Kit and TRIzol-based method. This modified nucleic acid extraction protocol can be used to confirm SARS-CoV-2 infection by RT-qPCR in the tissues of deceased patients in disputed cases. RT-qPCR with RNA of SARS-CoV-2 re-extracted with such method from post-mortem tissues that were stored at -80 °C for more than 32 months still demonstrated high-yielding positive results.

Keywords: COVID-19; Post-mortem tissues; RNA extraction; RT-qPCR; SARS-CoV-2
Grants and funding:

This work was supported by the Committee of Science of the Ministry of Science and Higher Education of the Republic of Kazakhstan [state grant #AP09259103 “Genomic and subgenomic characterization of SARS-CoV-2 strains, circulating in Kazakhstan, for the development of scientific approaches to COVID-19 diagnostics”].

Conflicts of interest:

The authors have no conflict of interest to declare.

Received: September 7, 2023; Revised: June 6, 2024; Accepted: June 20, 2024; Prepublished online: June 21, 2024; Published: June 24, 2024  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Berdygulova Z, Maltseva E, Perfilyeva Y, Nizkorodova A, Zhigailov A, Naizabayeva D, et al.. RT-qPCR investigation of post-mortem tissues during COVID-19. J Appl Biomed. 2024;22(2):115-122. doi: 10.32725/jab.2024.013. PubMed PMID: 38912867.
Download citation

Attachments

Download fileJAB_Berdygulova_2365_Suppl-1-2.pdf

File size: 72.48 kB

References

  1. Abid MB, Chhabra S, Buchan B, Graham MB, Abedin S, Thapa B, et al. (2021). Bronchoalveolar lavage-based COVID-19 testing in patients with cancer. Hematol Oncol Stem Cell Ther 14(1): 65-70. DOI: 10.1016/j.hemonc.2020.09.002. Go to original source... Go to PubMed...
  2. Agency for Strategic planning and reforms of the Republic of Kazakhstan, Bureau of National statistics (2020). [online] [cit. 2020-08-02]. Available from: https://old.stat.gov.kz/
  3. Al-Omari A, Rabaan AA, Salih S, Al-Tawfiq JA, Memish ZA (2019). MERS coronavirus outbreak: Implications for emerging viral infections. Diagn Microbiol Infect Dis 93(3): 265-285. DOI: 10.1016/j.diagmicrobio.2018.10.011. Go to original source... Go to PubMed...
  4. Amirouche A, Ait-Ali D, Nouri H, Boudrahme-Hannou L, Tliba S, Ghidouche A, Bitam I (2021). TRIzol-based RNA extraction for detection protocol for SARS-CoV-2 of coronavirus disease 2019. New Microbes and New Infections 41: 100874. DOI: 10.1016/j.nmni.2021.100874. Go to original source... Go to PubMed...
  5. Beltempo P, Curti SM, Maserati R, Gherardi M, Castelli M (2021). Persistence of SARS-CoV-2 RNA in post-mortem swab 35 days after death: A case report. Forensic Sci Int 319: 110653. DOI: 10.1016/j.forsciint.2020.110653. Go to original source... Go to PubMed...
  6. Bruce EA, Huang ML, Perchetti GA, Tighe S, Laaguiby P, Hoffman JJ, et al. (2020). Direct RT-qPCR detection of SARS-CoV-2 RNA from patient nasopharyngeal swabs without an RNA extraction step. PLOS Biology 18(10): e3000896. DOI: 10.1371/journal.pbio.3000896. Go to original source... Go to PubMed...
  7. Caniego-Casas T, Martínez-García L, Alonso-Riaño M, Pizarro D, Carretero-Barrio I, Martínez-de-Castro N, et al. (2022). RNA SARS-CoV-2 Persistence in the Lung of Severe COVID-19 Patients: A Case Series of Autopsies. Front Microbiol 13: 824967. DOI: 10.3389/fmicb.2022.824967. Go to original source... Go to PubMed...
  8. Chu DK, Pan Y, Cheng SM, Hui KP, Krishnan P, Liu Y, et al. (2020). Molecular Diagnosis of a Novel Coronavirus (2019-nCoV) Causing an Outbreak of Pneumonia. Clin Chem 66(4): 549-555. DOI: 10.1093/clinchem/hvaa029. Go to original source... Go to PubMed...
  9. Clinical protocol for the diagnosis and treatment of coronavirus infection COVID-19 in adults. Ministry of Health of the Republic of Kazakhstan (2022). Protocol No. 166. [online] [cit. 2022-07-25]. Available from: https://online.zakon.kz/document/?doc_id=36043894&pos=6;-109#pos=6;-109
  10. Corman VM, Landt O, Kaiser M, Molenkamp R, Meijer A, Chu DK, et al. (2020). Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surveill 25(3): 2000045. DOI: 10.2807/1560-7917.ES.2020.25.3.2000045. Go to original source... Go to PubMed...
  11. COVID-19 Autopsy Project (2020). The first COVID-19 autopsy in Spain performed during the early stages of the pandemic. Rev Esp Patol 53(3): 182-187. DOI: 10.1016/j.patol.2020.05.004. Go to original source... Go to PubMed...
  12. D'Cruz RJ, Currier AW, Sampson VB (2020). Laboratory Testing Methods for Novel Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2). Front Cell Dev Biol 8: 468. DOI: 10.3389/fcell.2020.00468. Go to original source... Go to PubMed...
  13. D'Errico S, Zanon M, Montanaro M, Radaelli D, Sessa F, Di Mizio G, et al. (2020). More than Pneumonia: Distinctive Features of SARS-Cov-2 Infection. From Autopsy Findings to Clinical Implications: A Systematic Review. Microorganisms 8(11): 1642. DOI: 10.3390/microorganisms8111642. Go to original source... Go to PubMed...
  14. Ezhilan M, Suresh I, Nesakumarb N (2021). SARS-CoV, MERS-CoV and SARS-CoV-2: A Diagnostic Challenge. Measurement (Lond). 168: 108335. DOI: 10.1016/j.measurement.2020.108335. Go to original source... Go to PubMed...
  15. Filchakova O, Dossym D, Ilyas A, Kuanysheva T, Abdizhamil A, Bukasov R (2022). Review of COVID-19 testing and diagnostic methods. Talanta 244: 123409. DOI: 10.1016/j.talanta.2022.123409. Go to original source... Go to PubMed...
  16. Freppel W, Merindol N, Rallu F, Bergevin M (2020). Efficient SARS-CoV-2 detection in unextracted oro-nasopharyngeal specimens by rRT-PCR with the Seegene Allplex™ 2019-nCoV assay. Virol J 17(1): 196. DOI: 10.1186/s12985-020-01468-x. Go to original source... Go to PubMed...
  17. Gaipov A, Gusmanov A, Abbay A, Sakko Y, Issanov A, Kadyrzhanuly K, et al. (2021). SARS-CoV-2 PCR-positive and PCR-negative cases of pneumonia admitted to the hospital during the peak of COVID-19 pandemic: analysis of in-hospital and post-hospital mortality. BMC Infect Dis 21(1): 458. DOI: 10.1186/s12879-021-06154-z. Go to original source... Go to PubMed...
  18. Gokulan CG, Kiran U, Kuncha SK, Mishra RK (2021). Temporal stability and detection sensitivity of the dry swab-based diagnosis of SARS-CoV-2. J Biosc 46: 95. DOI: 10.1007/s12038-021- 00216-9. Go to original source...
  19. Hong KH, Lee SW, Kim TS, Huh HJ, Lee J, Kim SY, et al. (2020). Guidelines for Laboratory Diagnosis of Coronavirus Disease 2019 (COVID-19) in Korea. Ann Lab Med 40(5): 351-360. DOI: 10.3343/alm.2020.40.5.351. Go to original source... Go to PubMed...
  20. Johns Hopkins Coronavirus Resource Center (2023). Mortality analysis. [online] [cit. 2023-06-07]. Available from: https://coronavirus.jhu.edu/data/mortality
  21. Kazakov SA, Balatskaya SV, Johnston BH (2006). Ligation of the hairpin ribozyme in cis induced by freezing and dehydration. RNA 12(3): 446-456. DOI: 10.1261/rna.2123506. Go to original source... Go to PubMed...
  22. KZ Health Ministry official page (2023). CoronaVirus2020KZ. [online] [cit. 2023-02-27]. Available from: https://www.coronavirus2020.kz
  23. Ma S, Huang Y, van Huystee RB (2004). Improved plant RNA stability in storage. Anal Biochem 326(1): 122-124. DOI: 10.1016/j.ab.2003.10.026. Go to original source... Go to PubMed...
  24. Mallmann L, Hermann BS, Schallenberger K, Demoliner M, Eisen AKA, Heldt FH, et al. (2021). Proteinase K treatment in absence of RNA isolation classical procedures is a quick and cheaper alternative for SARS-CoV-2 molecular detection. J Virol Methods 293: 114131. DOI: 10.1016/j.jviromet.2021.114131. Go to original source... Go to PubMed...
  25. Muller PY, Janovjak H, Miserez AR, Dobbie Z (2002). Processing of gene expression data generated by quantitative real-time RT-PCR. Biotechniques 32(6): 1372-1374, 1376, 1378-1379.
  26. Musso N, Falzone L, Stracquadanio S, Bongiorno D, Salerno M, Esposito M, et al. (2021). Post-Mortem Detection of SARS-CoV-2 RNA in Long-Buried Lung Samples. Diagnostics (Basel) 11(7): 1158. DOI: 10.3390/diagnostics11071158. Go to original source... Go to PubMed...
  27. Nguyen PY, Chen XJ, Kunasekaran M (2020). Rise in pneumonia cases of unknown aetiology in Kazakhstan in June 2020: A rapid analysis. Global Biosecurity 1(4). DOI: 10.31646/gbio.81. Go to original source...
  28. Poloni TE, Moretti M, Medici V, Turturici E, Belli G, Cavriani E, Ceroni M (2022). COVID-19 pathology in the lung, kidney, heart and brain: The different roles of T-cells, macrophages, and microthrombosis. Cells 11(19): 3124. DOI: 10.3390/cells11193124. Go to original source... Go to PubMed...
  29. Qamar W, Khan MR, Arafah A (2017). Optimization of conditions to extract high quality DNA for PCR analysis from whole blood using SDS-proteinase K method. Saudi J Biol Sci 24(7): 1465-1469. DOI: 10.1016/j.sjbs.2016.09.016. Go to original source... Go to PubMed...
  30. Sablone S, Solarino B, Ferorelli D, Benevento M, Chironna M, Loconsole D, et al. (2021). Post-mortem persistence of SARS-CoV-2: a preliminary study. Forensic Sci Med Pathol 17(3): 403-410. DOI: 10.1007/s12024-021-00375-z. Go to original source... Go to PubMed...
  31. Schaefer IM, Padera RF, Solomon IH, Kanjilal S, Hammer MM, Hornick JL, Sholl LM (2020). In situ detection of SARS-CoV-2 inlungs and airways of patients with COVID-19. Mod Pathol 33(11): 2104-2114. DOI: 10.1038/s41379-020-0595-z. Go to original source... Go to PubMed...
  32. Teymouri M, Mollazadeh S, Mortazavi H, Ghale-Noie ZN, Keyvani V, Aghababaei F, et al. (2021). Recent advances and challenges of RT-PCR tests for the diagnosis of COVID-19. Pathol Res Pract 221: 153443. DOI: 10.1016/j.prp.2021.153443. Go to original source... Go to PubMed...
  33. WHO (2018). Laboratory testing for Middle East respiratory syndrome coronavirus interim guidance (revised). [online] [cit. 2023-06-07]. Available from: http://apps.who.int/iris/bitstream/handle/10665/259952/WHO-MERS-LAB-15.1-Rev1-2018-eng.pdf?sequence=1
  34. WHO COVID-19 dashboard (2023). Number of COVID-19 cases reported to WHO. [online] [cit. 2023-06-07]. Available from: https://covid19.who.int
  35. Wiersinga WJ, Rhodes A, Cheng AC, Peacock SJ, Prescott HC (2020). Pathophysiology, transmission, diagnosis, and treatment of coronavirus disease 2019 (COVID-19): a review. JAMA 324(8): 782-793. DOI: 10.1001/jama.2020.12839. Go to original source... Go to PubMed...
  36. Yegorov S, Goremykina M, Ivanova R, Good SV, Babenko D, Shevtsov A, et al. (2021). Epidemiology, clinical characteristics, and virologic features of COVID-19 patients in Kazakhstan: A nation-wide retrospective cohort study. Lancet Reg Health Eur 4: 100096. DOI: 10.1016/j.lanepe.2021.100096. Go to original source... Go to PubMed...
  37. Zhu Y, Wang L, Yin Y, Yang E (2017). Systematic analysis of gene expression patterns associated with postmortem interval in human tissues. Sci Rep 7(1): 5435. DOI: 10.1038/s41598-017-05882-0. Go to original source... Go to PubMed...
  38. Zhussupov B, Saliev T, Sarybayeva G, Altynbekov K, Tanabayeva S, Altynbekov S, et al. (2021). Analysis of COVID-19 pandemics in Kazakhstan. J Res Health Sci 21(2): e00512. DOI: 10.34172/jrhs.2021.52. Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.