J Appl Biomed 23:117-125, 2025 | DOI: 10.32725/jab.2025.012

Characteristics of healthy sinonasal microbiome - single-centre study in the Czech Republic

Kristýna Mamiňák1, 2, 3, Karla Janoušková1, 2, Richard Holý1, 2, Alžběta Prášilová4, Tomáš Filipovský1, 2, Daniel Kovář1, Jaromír Astl1, 2
1 3rd Faculty of Medicine Charles University and Military University Hospital Prague, Department of Otorhinolaryngology and Maxillofacial Surgery, Prague, Czech Republic
2 Charles University, 3rd Faculty of Medicine, Prague, Czech Republic
3 Czech Academy of Science, Institute of Microbiology, Prague, Czech Republic
4 Charles University, Faculty of Science, Prague, Czech Republic

Introduction: The human nasal cavity and paranasal sinuses host a complex and dynamic microbiome which has a crucial role in mucosal immunity. A comprehensive profile of the healthy sinonasal microbiome remains limited. The purpose of our study was to characterize the healthy sinonasal microbiome in adults using 16S rRNA long-read sequencing to enable species-level resolution, and to assess its associations with demographical and clinical factors such as smoking, allergy history, and olfactory function. Study design: We performed a prospective, single-centre study analysing middle meatus samples from 27 healthy individuals undergoing septoplasty in the age range from 21 to 57 years, excluding those with antibiotic and corticosteroid use and those with signs of acute or chronic rhinosinusitis.

Results: A high interindividual variability in the composition of healthy sinonasal microbiome was observed. At the phylum level, it was dominated by Firmicutes (48.96%), Actinobacteria (34.83%), and Proteobacteria (13.85%), while Firmicutes and Actinobacteria were consistently present in all samples. At the genus level, Staphylococcus spp. (32.32%), Cutibacterium (28.04%), and Corynebacterium (4.66%) were most abundant. We observed trend level correlations between phyla and some clinical factors (e.g., smoking and olfactory dysfunction) and selected phyla. However, none remained significant after false discovery rate (FDR) correction across taxa.

Conclusion: The study proposes Staphylococcus spp., Corynebacterium spp., and Cutibacterium spp. to be a core taxa in the healthy sinonasal microbiome. Amid the interindividual diversity in our cohort, there was evidence of a stable core microbiome potentially influenced by environmental and host factors. Our findings suggest a baseline reference for distinguishing a dysbiosis in upper respiratory disease.

Keywords: 16S rRNA sequencing; Healthy individuals; Olfactometry; Sinonasal microbiome
Grants and funding:

Supported by the Ministry of Health of the Czech Republic in cooperation with the Czech Health Research Council under project No. NU22-09-00493.

Conflicts of interest:

The authors have no conflict of interest to declare.

Received: April 28, 2025; Revised: August 21, 2025; Accepted: September 23, 2025; Prepublished online: September 26, 2025; Published: September 30, 2025  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Mamiňák K, Janoušková K, Holý R, Prášilová A, Filipovský T, Kovář D, Astl J. Characteristics of healthy sinonasal microbiome - single-centre study in the Czech Republic. J Appl Biomed. 2025;23(3):117-125. doi: 10.32725/jab.2025.012. PubMed PMID: 41026946.
Download citation

References

  1. Anderson M, Stokken J, Sanford T, Aurora R, Sindwani R (2016). A systematic review of the sinonasal microbiome in chronic rhinosinusitis. Am J Rhinol Allergy 30(3): 161-166. DOI: 10.2500/ajra.2016.30.4320. Go to original source... Go to PubMed...
  2. Aurora R, Chatterjee D, Hentzleman J, Prasad G, Sindwani R, Sanford T (2013). Contrasting the microbiomes from healthy volunteers and patients with chronic rhinosinusitis. JAMA Otolaryngol Head Neck Surg 139(12): 1328-1338. DOI: 10.1001/jamaoto.2013.5465. Go to original source... Go to PubMed...
  3. Bars-Cortina D, Moratalla-Navarro F, García-Serrano A, Mach N, Riobó-Mayo L, Vea-Barbany J, et al. (2023). Improving Species Level-taxonomic Assignment from 16S rRNA Sequencing Technologies. Curr Protoc 3(11): e930. DOI8: 10.1002/cpz1.930. Go to original source...
  4. Bassiouni A, Paramasivan S, Shiffer A, Dillon MR, Cope EK, Cooksley C, et al. (2020). Microbiotyping the Sinonasal Microbiome. Front Cell Infect Microbiol 10: 137. DOI: 10.3389/fcimb.2020.00137. Go to original source... Go to PubMed...
  5. Bassis CM, Tang AL, Young VB, Pynnonen MA (2014). The nasal cavity microbiota of healthy adults. Microbiome 2: 27. DOI: 10.1186/2049-2618-2-27. Go to original source... Go to PubMed...
  6. Biswas K, Ramakrishnan VR, Hollemann E, Lorenz K, Wagner Mackenzie B, Frank DN, et al. (2023). Bacterial communities in the nasal passage of postviral olfactory dysfunction patients. Int Forum Allergy Rhinol 13(10): 1962-1965. DOI: 10.1002/alr.23149. Go to original source... Go to PubMed...
  7. Buckland JR, Thomas S, Harries PG (2003). Can the Sino-nasal Outcome Test (SNOT-22) be used as a reliable outcome measure for successful septal surgery? Clin Otolaryngol Allied Sci 28(1): 43-47. DOI: 10.1046/j.1365-2273.2003.00663.x. Go to original source... Go to PubMed...
  8. Casadevall A, Pirofski LA (2015). What is a host? Incorporating the microbiota into the damage-response framework. Infect Immun 83(1): 2-7. DOI: 10.1128/IAI.02627-14. Go to original source... Go to PubMed...
  9. Červený K, Janoušková K, Vaněčková K, Zavázalová Š, Funda D, Astl J, Holy R (2022). Olfactory Evaluation in Clinical Medical Practice. J Clin Med 11(22): 6628. DOI: 10.3390/jcm11226628. Go to original source... Go to PubMed...
  10. Chen M, He S, Miles P, Li C, Ge Y, Yu X, et al. (2022). Nasal Bacterial Microbiome Differs Between Healthy Controls and Those With Asthma and Allergic Rhinitis. Front Cell Infect Microbiol 12: 841995. DOI: 10.3389/fcimb.2022.841995. Go to original source... Go to PubMed...
  11. De Boeck I, Wittouck S, Wuyts S, Oerlemans EFM, van den Broek MFL, Vandenheuvel D, et al. (2017). Comparing the Healthy Nose and Nasopharynx Microbiota Reveals Continuity As Well As Niche-Specificity. Front Microbiol 8: 2372. DOI: 10.3389/fmicb.2017.02372. Go to original source... Go to PubMed...
  12. Feng K, Peng X, Zhang Z, Gu S, He Q, Shen W, et al. (2022). iNAP: An integrated network analysis pipeline for microbiome studies. Imeta 1(2): e13. DOI: 10.1002/imt2.13. Go to original source... Go to PubMed...
  13. Fernández-Rodríguez D, Cho J, Chisari E, Citardi MJ, Parvizi J (2024). Nasal microbiome and the effect of nasal decolonization with a novel povidone-iodine antiseptic solution: a prospective and randomized clinical trial. Sci Rep 14: 16739. DOI: 10.1038/s41598-023-46792-8. Go to original source... Go to PubMed...
  14. Fokkens WJ, Lund VJ, Hopkins C, Hellings PW, Kern R, Reitsma S, et al. (2020). European Position Paper on Rhinosinusitis and Nasal Polyps 2020. Rhinology 58(Suppl S29): 1-464. DOI: 10.4193/Rhin20.600. Go to original source... Go to PubMed...
  15. Fuochi V, Caruso M, Emma R, Stivala A, Polosa R, Distefano A, Furneri PM (2021). Investigation on the Antibacterial Activity of Electronic Cigarette Liquids (ECLs): A Proof of Concept Study. Curr Pharm Biotechnol 22(7): 983-994. DOI: 10.2174/1389201021666200903121624. Go to original source... Go to PubMed...
  16. Gisler A, Korten I, de Hoogh K, Vienneau D, Frey U, Decrue F, et al. (2021). Associations of air pollution and greenness with the nasal microbiota of healthy infants: A longitudinal study. Environ Res 202: 111633. DOI: 10.1016/j.envres.2021.111633. Go to original source... Go to PubMed...
  17. Han X, He X, Zhan X, Yao L, Sun Z, Gao X, et al. (2023). Disturbed microbiota-metabolites-immune interaction network is associated with olfactory dysfunction in patients with chronic rhinosinusitis. Front Immunol 14: 1159112. DOI: 10.3389/fimmu.2023.1159112. Go to original source... Go to PubMed...
  18. Head K, Chong LY, Piromchai P, Hopkins C, Philpott C, Schilder AG, Burton MJ (2016). Systemic and topical antibiotics for chronic rhinosinusitis. Cochrane Database Syst Rev 4(4): CD011994. DOI: 10.1002/14651858.CD011994.pub2. Go to original source... Go to PubMed...
  19. Hopkins C, Rudmik L, Lund VJ (2015). The predictive value of the preoperative Sinonasal Outcome Test-22 score in patients undergoing endoscopic sinus surgery for chronic rhinosinusitis. Laryngoscope 125(8): 1779-1784. DOI: 10.1002/lary.25318. Go to original source... Go to PubMed...
  20. Huang S, Hon K, Bennett C, Hu H, Menberu M, Wormald PJ, et al. (2022). Corynebacterium accolens inhibits Staphylococcus aureus induced mucosal barrier disruption. Front Microbiol 13: 984741. DOI: 10.3389/fmicb.2022.984741. Go to original source... Go to PubMed...
  21. Jin XEF, Low DY, Ang L, Lu L, Yin X, Tan YQ, et al. (2023). Exposure to cooking fumes is associated with perturbations in nasal microbiota composition: A pilot study. Environ Res 234: 116392. DOI : 10.1016/j.envres.2023.116392. Go to original source... Go to PubMed...
  22. Kaspar U, Kriegeskorte A, Schubert T, Peters G, Rudack C, Pieper DH, et al. (2016). The culturome of the human nose habitats reveals individual bacterial fingerprint patterns. Environ Microbiol 18(7): 2130-2142. DOI: 10.1111/1462-2920.12891. Go to original source... Go to PubMed...
  23. Konovalovas A, Armalyte J, Klimkaite L, Liveikis T, Jonaityte B, Danila E, et al. (2024). Human nasal microbiota shifts in healthy and chronic respiratory disease conditions. BMC Microbiol 24(1): 150. DOI: 10.1186/s12866-024-03294-5. Go to original source... Go to PubMed...
  24. Koskinen K, Reichert JL, Hoier S, Schachenreiter J, Duller S, Moissl-Eichinger C, Schöpf V (2018). The nasal microbiome mirrors and potentially shapes olfactory function. Sci Rep 8(1): 1296. DOI: 10.1038/s41598-018-19438-3. Go to original source... Go to PubMed...
  25. Krismer B, Weidenmaier C, Zipperer A, Peschel A (2017). The commensal lifestyle of Staphylococcus aureus and its interactions with the nasal microbiota. Nat Rev Microbiol 15(11): 675-687. DOI: 10.1038/nrmicro.2017.104. Go to original source... Go to PubMed...
  26. Kumpitsch C, Koskinen K, Schopf V, Moissl-Eichinger C (2019). The microbiome of the upper respiratory tract in health and disease. BMC Biol 17: 87. DOI: 10.1186/s12915-019-0703-z. Go to original source... Go to PubMed...
  27. Lal D, Keim P, Delisle J, Barker B, Rank MA, Chia N, et al. (2017). Mapping and comparing bacterial microbiota in the sinonasal cavity of healthy, allergic rhinitis, and chronic rhinosinusitis subjects. Int Forum Allergy Rhinol 7(6): 561-569. DOI: 10.1002/alr.21934. Go to original source... Go to PubMed...
  28. Lladó Fernández S, Větrovský T, Baldrian P (2019). The concept of operational taxonomic units revisited: genomes of bacteria that are regarded as closely related are often highly dissimilar. Folia Microbiol 64(1): 19-23. DOI: 10.1007/s12223-018-0627-y. Go to original source... Go to PubMed...
  29. Lu YJ, Sasaki T, Kuwahara-Arai K, Uehara Y, Hiramatsu K (2018). Development of a New Application for Comprehensive Viability Analysis Based on Microbiome Analysis by Next-Generation Sequencing: Insights into Staphylococcal Carriage in Human Nasal Cavities. Appl Environ Microbiol 84(11): e00517-518. DOI: 10.1128/AEM.00517-18. Go to original source... Go to PubMed...
  30. Ludwig W (2007). Nucleic acid techniques in bacterial systematics and identification. Int J Food Microbiol 120(3): 225-236. DOI: 10.1016/j.ijfoodmicro.2007.06.023. Go to original source... Go to PubMed...
  31. Mahdavinia M, Engen PA, LoSavio PS, Naqib A, Khan RJ, Tobin MC, et al. (2018). The nasal microbiome in patients with chronic rhinosinusitis: Analyzing the effects of atopy and bacterial functional pathways in 111 patients. J Allergy Clin Immunol 142(1): 287-290.e4. DOI: 10.1016/j.jaci.2018.01.033. Go to original source... Go to PubMed...
  32. Mamiňák K, Funda D, Zavázalová Š, Filipovský T, Kovář D, Janoušková K, et al. (2024). The microbiome and chronic rhinosinusitis. Otorhinolaryngol Phoniatr 73(3): 182-190. DOI: 10.48095/ccorl2024182. Go to original source...
  33. Marchesi JR, Ravel J (2015). The vocabulary of microbiome research: a proposal. Microbiome 3: 31. DOI: 10.1186/s40168-015-0094-5. Go to original source... Go to PubMed...
  34. Orlandi RR, Kingdom TT, Hwang PH, Smith TL, Alt JA, Baroody FM, et al. (2016). International Consensus Statement on Allergy And Rhinology: Rhinosinusitis. Int Forum Allergy Rhinol 6 Suppl 1: S22-S209. DOI: 10.1002/alr.21695. Go to original source... Go to PubMed...
  35. Paramasivan S, Bassiouni A, Shiffer A, Dillon MR, Cope EK, Cooksley C, et al. (2020). The international sinonasal microbiome study: A multicentre, multinational characterization of sinonasal bacterial ecology. Allergy 75(8): 2037-2049. DOI: 10.1111/all.14276. Go to original source... Go to PubMed...
  36. Pereira PAB, Aho VTE, Paulin L, Pekkonen E, Auvinen P, Scheperjans F (2017). Oral and nasal microbiota in Parkinson's disease. Parkinsonism Relat Disord 38: 61-67. DOI: 10.1016/j.parkreldis.2017.02.026. Go to original source... Go to PubMed...
  37. Pfeiffer S, Herzmann C, Gaede KI, Kovacevic D, Krauss-Etschmann S, Schloter M (2022). Different responses of the oral, nasal and lung microbiomes to cigarette smoke. Thorax 77(2): 191-195. DOI: 10.1136/thoraxjnl-2020-216153. Go to original source... Go to PubMed...
  38. Pu Y, Zhou X, Cai H, Lou T, Liu C, Kong M, et al. (2025). Impact of DNA Extraction Methods on Gut Microbiome Profiles: A Comparative Metagenomic Study. Phenomics 5(1): 76-90. DOI: 10.1007/s43657-025-00232-x. Go to original source... Go to PubMed...
  39. Quail MA, Kozarewa I, Smith F, Scally A, Stephens PJ, Durbin R, et al. (2008). A large genome center's improvements to the Illumina sequencing system. Nat Methods 5(12): 1005-1010. DOI: 10.1038/nmeth.1270. Go to original source... Go to PubMed...
  40. Raita Y, Toivonen L, Schuez-Havupalo L, Karppinen S, Waris M, Hoffman KL, et al. (2021). Maturation of nasal microbiota and antibiotic exposures during early childhood: a population-based cohort study. Clin Microbiol Infect 27(2): 283.e1-283.e7. DOI: 10.1016/j.cmi.2020.05.033. Go to original source... Go to PubMed...
  41. Ramakrishnan VR, Holt J, Nelson LF, Ir D, Robertson CE, Frank DN (2018). Determinants of the Nasal Microbiome: Pilot Study of Effects of Intranasal Medication Use. Allergy Rhinol 9: 2152656718789519. DOI: 10.1177/2152656718789519. Go to original source... Go to PubMed...
  42. Rasmussen TT, Kirkeby LP, Poulsen K, Reinholdt J, Kilian M (2000). Resident aerobic microbiota of the adult human nasal cavity. APMIS 108(10): 663-675. DOI: 10.1034/j.1600-0463.2000.d01-13.x. Go to original source... Go to PubMed...
  43. Sheka D, Alabi N, Gordon PMK (2021). Oxford nanopore sequencing in clinical microbiology and infection diagnostics. Brief Bioinform 22(5): bbaa403. DOI: 10.1093/bib/bbaa403. Go to original source... Go to PubMed...
  44. Song H, Zou J, Sun Z, Pu Y, Qi W, Sun L, et al. (2025). Nasal microbiome in relation to olfactory dysfunction and cognitive decline in older adults. Transl Psychiatry 15(1): 122. DOI: 10.1038/s41398-025-03346-y. Go to original source... Go to PubMed...
  45. Thangaleela S, Sivamaruthi BS, Kesika P, Bharathi M, Chaiyasut C (2022). Nasal Microbiota, Olfactory Health, Neurological Disorders and Aging - A Review. Microorganisms 10(7): 1405. DOI: 10.3390/microorganisms10071405. Go to original source... Go to PubMed...
  46. Toro-Ascuy D, Cárdenas JP, Zorondo-Rodríguez F, González D, Silva-Moreno E, Puebla C, et al. (2023). Microbiota Profile of the Nasal Cavity According to Lifestyles in Healthy Adults in Santiago, Chile. Microorganisms 11(7): 1635. DOI: 10.3390/microorganisms11071635. Go to original source... Go to PubMed...
  47. Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991). 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173(2): 697-703. DOI: 10.1128/jb.173.2.697-703.1991. Go to original source... Go to PubMed...
  48. Wolfensberger M, Schnieper I, Welge-Lussen A (2000). Sniffin' Sticks: a new olfactory test battery. Acta Otolaryngol 120(2): 303-306. DOI: 10.1080/000164800750001134. Go to original source... Go to PubMed...
  49. Yan M, Pamp SJ, Fukuyama J, Hwang PH, Cho DY, Holmes S, Relman DA (2013). Nasal microenvironments and interspecific interactions influence nasal microbiota complexity and S. aureus carriage. Cell Host Microbe 14(6): 631-640. DOI: 10.1016/j.chom.2013.11.005. Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.