J Appl Biomed 23:144-151, 2025 | DOI: 10.32725/jab.2025.011

Influence of the antidiabetic drug metformin on the aquatic crustacean Daphnia magna

Martina Poncarová1, ©árka Klementová1 *, Michal ©orf2
1 University of South Bohemia in Èeské Budìjovice, Faculty of Science, Èeské Budìjovice, Czech Republic
2 Mendel University in Brno, Faculty of Agrisciences, Brno, Czech Republic

Background: The antidiabetic drug metformin has been repeatedly detected in surface waters worldwide. This study investigates the effects of the environmentally relevant concentration of metformin on a non-target aquatic organism - a freshwater crustacean, Daphnia magna, with an emphasis on the stress response of daphnids and the long-term effects on their consecutive generations.

Methods: The chronic toxicity test and the consecutive generations test were inspired by the OECD method. The total antioxidant capacity (Trolox equivalent - TEAC), superoxide dismutase (SOD) activity, and catalase (CAT) activity were related to the protein content in the tested daphnids.

Results: Elevated antioxidant activities were revealed in daphnids exposed to metformin in comparison to the control group (1.9 × for TEAC, 1.7 × for SOD; 1.3 × for CAT). Furthermore, diminished body sizes and malformations in the digestive system, spine and carapace were detected in newborn juveniles in the second and third generations exposed to metformin.

Conclusion: Long-term exposure to metformin in environmentally relevant concentrations led to a significant detrimental reaction in aquatic crustaceans.

Keywords: Daphnia; Effect on consecutive generations; Metformin
Conflicts of interest:

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this article.

Received: April 7, 2025; Revised: July 3, 2025; Accepted: August 11, 2025; Prepublished online: August 21, 2025; Published: September 30, 2025  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Poncarová M, Klementová ©, ©orf M. Influence of the antidiabetic drug metformin on the aquatic crustacean Daphnia magna. J Appl Biomed. 2025;23(3):144-151. doi: 10.32725/jab.2025.011. PubMed PMID: 41026949.
Download citation

References

  1. Agatz A, Cole TA, Preuss TG, Zimmer E, Brown CD (2013). Feeding inhibition explains effects of imidacloprid on the growth, maturation, reproduction, and survival of Daphnia magna. Environ Sci Technol 47(6): 2909-2917. DOI: 10.1021/es304784t. Go to original source... Go to PubMed...
  2. Ambrosio-Albuquerqu EP, Cusioli LF, Bergamasco R, Sinópolis Gigliolli AA, Lupepsa L, Paupitz BR, et al. (2021). Metformin environmental exposure: A systematic review. Environ Toxicol Pharmacol 83: 103588. DOI: 10.1016/j.etap.2021.103588. Go to original source... Go to PubMed...
  3. Anetor GO, Nwobi NL, Igharo GO, Sonuga OO, Anetor JI (2022). Environmental Pollutants and Oxidative Stress in Terrestrial and Aquatic Organisms: Examination of the Total Picture and Implications for Human Health. Front Physiol 13: 931386. DOI: 10.3389/fphys.2022.931386. Go to original source... Go to PubMed...
  4. Bailey CJ (2017). Metformin: historical overview. Diabetologia 60(9): 1566-1576. DOI: 10.1007/s00125-017-4318-z. Go to original source... Go to PubMed...
  5. Caldwell DJ, D'Aco V, Davidson T, Kappler K, Murray-Smith RJ, Owen SF, et al. (2019). Environmental risk assessment of metformin and its transformation product guanylurea: II. Occurrence in surface waters of Europe and the United States and derivation of predicted no-effect concentrations. Chemosphere 216: 855-865. DOI: 10.1016/j.chemosphere.2018.10.038. Go to original source... Go to PubMed...
  6. Campbell RK, White JR, Jr., Saulie BA (1996). Metformin: a new oral biguanide. Clin Ther 18(3): 360-371. DOI: 10.1016/S0149-2918(96)80017-8. Go to original source... Go to PubMed...
  7. Cleuvers M (2003). Aquatic ecotoxicity of pharmaceuticals including the assessment of combination effects. Toxicol Lett 142(3): 185-194. DOI: 10.1016/S0378-4274(03)00068-7. Go to original source... Go to PubMed...
  8. Corcoran C, Jacobs TF (2023). Metformin. National Library of Medicine. Treasure Island (FL): StatPearls Publishing. [online] [cit. 2025-01-22]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK518983/
  9. Dutta S, Shah RB, Singhal S, Dutta SB, Bansal S, Sinha S, Haque M (2023). Metformin: A review of potential mechanism and therapeutic utility beyond diabetes. Drug Des Devel Ther 17: 1907-1932. DOI: 10.2147/DDDT.S409373. Go to original source... Go to PubMed...
  10. Elizalde-Velázquez GA, Gómez-Oliván LM, García-Medina S, Islas-Flores H, Hernández-Navarro MD, Galar-Martínez M (2021). Antidiabetic drug metformin disrupts the embryogenesis in zebrafish through an oxidative stress mechanism. Chemosphere 285: 131213. DOI: 10.1016/j.chemosphere.2021.131213. Go to original source... Go to PubMed...
  11. Ellis LA, Kissane S, Lynch I (2020). Maternal Responses and Adaptive Changes to Environmental Stress via Chronic Nanomaterial Exposure: Differences in Inter and Transgenerational Interclonal Broods of Daphnia magna. Int J Mol Sci 22(1): 15. DOI: 10.3390/ijms22010015. Go to original source... Go to PubMed...
  12. EMA/CHMP/ICH/82072/2006. Committee for Medicinal Products for Human Use. ICH Q2(R2) Guideline on validation of analytical procedures, updated in 2023. [online] [cit. 2025-01-22]. Available from: https://www.ema.europa.eu/en/documents/scientific-guideline/ich-q2r2-guideline-validation-analytical-procedures-step-5-revision-1_en.pdf
  13. Eurachem (1998). The Fitness for Purpose of Analytical Methods (A Laboratory Guide to Method Validation and Related Topics). [online] [cit. 2025-01-22]. Available from: http://eurachem.org/images/stories/Guides/pdf/valid.pdf
  14. Foretz M, Guigas B, Viollet B (2023). Metformin: update on mechanisms of action and repurposing potential. Nat Rev Endocrinol 19(8): 460-476. DOI: 10.1038/s41574-023-00833-4. Go to original source... Go to PubMed...
  15. Genazzani AD, Ricchieri F, Lanzoni C (2010). Use of metformin in the treatment of polycystic ovary syndrome. Women's Health 6(4): 577-593. DOI: 10.2217/whe.10.43. Go to original source... Go to PubMed...
  16. Giannouli M, Panagiotidis K, Rochfort KD, Grintzalis K (2023). Development and application of a sensitive feeding assay for daphnids based on the ingestion of fluorescent microparticles. Environ Sci Adv 2: 1351-1359. DOI: 10.1039/D3VA00116D. Go to original source...
  17. Graham GG, Punt J, Arora M, Day RO, Doogue MP, Duong JK, et al. (2011). Clinical pharmacokinetics of metformin. Clin Pharmacokinet 50(2): 81-98. DOI: 10.2165/11534750-000000000-00000. Go to original source... Go to PubMed...
  18. Grzesiuk M, Grabska M, Malinowska A, ¦widerska B, Grzesiuk E, Garbicz D, Gorecki A (2024). Daphnia stress response to environmental concentrations of chloramphenicol - multi-omics approach. Environ Sci Pollut Res 31: 58876-58888. DOI: 10.1007/s11356-024-35045-4. Go to original source... Go to PubMed...
  19. Grzesiuk M, Pianowska J, Markowska M, Bednarska A (2020). Morphological deformation of Daphnia magna embryos caused by prolonged exposure to ibuprofen. Environ Pollut 261: 114135. DOI: 10.1016/j.envpol.2020.114135. Go to original source... Go to PubMed...
  20. Hardie DG (2007). AMP-activated protein kinase as a drug target. Annu Rev Pharmacol Toxicol 47: 185-210. DOI: 10.1146/annurev.pharmtox.47.120505.105304. Go to original source... Go to PubMed...
  21. Hu LX, Olaitan OJ, Li Z, Yang YY, Chimezie A, Adepoju-Bello AA, et al. (2021). What is in Nigerian waters? Target and non-target screening analysis for organic chemicals. Chemosphere 284: 131546. DOI: 10.1016/j.chemosphere.2021.131546. Go to original source... Go to PubMed...
  22. Johnson NP (2014). Metformin use in women with polycystic ovary syndrome. Ann Transl Med 2(6): 56. DOI: 10.3978/j.issn.2305-5839.2014.04.15. Go to original source... Go to PubMed...
  23. Kahoun D, Øezková S, Královský J (2017). Effect of heat treatment and storage conditions on mead composition. Food Chem 219: 357-363. DOI: 10.1016/j.foodchem.2016.09.161. Go to original source... Go to PubMed...
  24. Kasznicki J, Sliwinska A, Drzewoski J (2014). Metformin in cancer prevention and therapy. Ann Transl Med 2(6): 57-68. DOI: 10.3978/j.issn.2305-5839.2014.06.01. Go to original source... Go to PubMed...
  25. Klüttgen B, Dülmer U, Engels M, Ratte HT (1994). ADaM, an artificial freshwater for the culture of zooplankton. Water Res 28(3): 743-746. DOI: 10.1016/0043-1354(94)90157-0. Go to original source...
  26. Kumari R, Singh Y, Prajapati B, Ahmad S, Srivastava SP (2025). METFORMIN: A Review on it's Biological Activities and functioning. Dialogues Cardiovasc Med 30(1): 21-28.
  27. Lee A, Morley JE (1998). Metformin decreases food consumption and induces weight loss in subjects with obesity with type II non-insulin-dependent diabetes. Obes Res 6(1): 47-53. DOI: 10.1002/j.1550-8528.1998.tb00314.x. Go to original source... Go to PubMed...
  28. Lee DE, Lee HM, Jun Y, Choi SY, Lee SJ, Kwon OS (2025). Metformin induces apoptosis in TRAIL-resistant colorectal cancer cells. Biochim Biophys Acta Mol Cell Res 1872(1): 119873. DOI: 10.1016/j.bbamcr.2024.119873. Go to original source... Go to PubMed...
  29. Lee JW, Shin Y, Kim H, Kim H, Kim J, Min S, et al. (2019). Metformin-induced endocrine disruption and oxidative stress of Oryzias latipes on two-generational condition. J Hazard Mater 367: 171-181. DOI: 10.1016/j.jhazmat.2018.12.084. Go to original source... Go to PubMed...
  30. Lee SY (2017). Assessment of aquatic toxicity and endocrine disruption potential of metformin, an anti-diabetic drug. Department of Environmental Health Sciences. Seoul National University. 000000141843.pdf (snu.ac.kr). [online] [cit. 2025-01-22]. Available from: https://s-space.snu.ac.kr/handle/10371/128271
  31. Li JZ, Li YR (2023). Cardiovascular protection by metformin: latest advances in basic and clinical research. Cardiology 148(4): 374-384. DOI: 10.1159/000531432. Go to original source... Go to PubMed...
  32. Lv WS, Wen JP, Li L, Sun RX, Wang J, Xian YX, et al. (2012). The effect of metformin on food intake and its potential role in hypothalamic regulation in obese diabetic rats. Brain Res 1444: 11-19. DOI: 10.1016/j.brainres.2012.01.028. Go to original source... Go to PubMed...
  33. Mattson MP (2008). Hormesis defined. Ageing Res Rev 7(1): 1-7. DOI: 10.1016/j.arr.2007.08.007. Go to original source... Go to PubMed...
  34. Messiaen M, Janssen CR, Thas O, De Schamphelaere KA (2012). The potential for adaptation in a natural Daphnia magna population: broad and narrow-sense heritability of net reproductive rate under Cd stress at two temperatures. Ecotoxicology 21(7): 1899-1910. DOI: 10.1007/s10646-012-0923-2. Go to original source... Go to PubMed...
  35. Moberg GP (1985). Influence of Stress on Reproduction: Measure of Well-being. In: Moberg GP (Eds). Animal Stress. Springer, New York, NY, pp. 245-267. DOI: 10.1007/978-1-4614-7544-6_14. Go to original source...
  36. Muñoz-Acevedo A, Vargas Méndez LY, Stashenko EE, Kouznetsov VV (2011). Improved Trolox® Equivalent Antioxidant Capacity Assay for Efficient and Fast Search of New Antioxidant Agents. Anal Chem Lett 1(1): 86-102. DOI: 10.1080/22297928.2011.10648207. Go to original source...
  37. Mustafa SA, Al-Rudainy AJ, Salman NM (2024). Effect of environmental pollutants on fish health: An overview. TheEgyptian Journal of Aquatic Research 50(2): 225-233. DOI: 10.1016/j.ejar.2024.02.006. Go to original source...
  38. OECD (2004). Test No. 202: Daphnia sp. Acute Immobilisation Test. OECD Guidelines for the Testing of Chemicals, Section 2, OECD Publishing, Paris. DOI: 10.1787/9789264069947-en. Go to original source...
  39. OECD (2012). Test No. 211: Daphnia magna Reproduction Test. OECD Guidelines for the Testing of Chemicals, Section 2, OECD Publishing, Paris. DOI: 10.1787/9789264185203-en. Go to original source...
  40. Parrott JL, Pacepavicius G, Shires K, Clarence S, Khan H, Gardiner M, et al. (2021). Fathead minnow exposed to environmentally relevant concentrations of metformin for one life cycle show no adverse effects. FACETS 6: 998-1023. DOI: 10.1139/facets-2020-0106. Go to original source...
  41. Rabus M, Söllradl T, Clausen-Schaumann H, Laforsch C (2013). Uncovering ultrastructural defences in Daphnia magna - An interdisciplinary approach to assess the predator-induced fortification of the aarapace. PLoS One 86(6): e67856. DOI: 10.1371/journal.pone.0067856. Go to original source... Go to PubMed...
  42. Ragan K (2024). The truth about metformin. Is it a wonder drug? UCHealth Today. [online] [cit. 2025-01-22]. Available from: https://www.uchealth.org/today/truth-about-metformin-is-it-a-wonder-drug/
  43. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26(9-10): 1231-1237. DOI: 10.1016/s0891-5849(98)00315-3. Go to original source... Go to PubMed...
  44. Rena G, Hardie DG, Pearson ER (2017). The mechanisms of action of metformin. Diabetologia 60(9): 1577-1585. DOI: 10.1007/s00125-017-4342-z. Go to original source... Go to PubMed...
  45. Ritschar S, Bangalore Narayana VK, Rabus M, Laforsch C (2020a). Uncovering the chemistry behind inducible morphological defences in the crustacean Daphnia magna via micro-Raman spectroscopy. Sci Rep 10(1): 22408. DOI: 10.1038/s41598-020-79755-4. Go to original source... Go to PubMed...
  46. Ritschar S, Rabus M, Laforsch C (2020b). Predator-specific inducible morphological defenses of a water flea against two freshwater predators. J Morphol 281: 653-661. DOI: 10.1002/jmor.21131. Go to original source... Go to PubMed...
  47. Rotllant G, Llonch P, García Del Arco JA, Chic Ò, Flecknell P, Sneddon LU (2023). Methods to Induce Analgesia and Anesthesia in Crustaceans: A Supportative Decision Tool. Biology 12(3): 387. DOI: 10.3390/biology12030387. Go to original source... Go to PubMed...
  48. Sibiya A, Al-Ghanim KA, Govindarajan M, Nicoletti M, Sachivkina N, Vaseeharan B (2023). Biochemical Patterns and Genotoxicity of the Endocrine Disruptor Metformin in the Freshwater Fish Labeo rohita. Fishes 8(7): 380. DOI: 10.3390/fishes8070380. Go to original source...
  49. Stoscheck CM (1990). Quantification of proteins. Methods Enzymol 182: 50-68. DOI: 10.1016/0076-6879(90)82008-p. Go to original source... Go to PubMed...
  50. Ussery E, Bridges KN, Pandelides Z, Kirkwood AE, Bonetta D, Venables BJ, et al. (2018). Effects of environmentally relevant metformin exposure on Japanese medaka (Oryzias latipes). Aquat Toxicol 205: 58-65. DOI: 10.1016/j.aquatox.2018.10.003. Go to original source... Go to PubMed...
  51. Yang D, Zheng Q, Thai PK, Ahmed F, O'Brien JW, Mueller JF, et al. (2022). A nationwide wastewater-based assessment of metformin consumption across Australia. Environ Int 165: 107282. DOI: 10.1016/j.envint.2022.107282. Go to original source... Go to PubMed...
  52. Yuan D, Zhang B (2025). Assessing the chronic toxicity of climbazole to Daphnia magna: Physiological, biochemical, molecular, and reproductive perspectives. Comp Biochem Physiol C Toxicol Pharmacol 287: 110061. DOI: 10.1016/j.cbpc.2024.110061. Go to original source... Go to PubMed...
  53. Zhao Y, Hu L, Hou Y, Wang Y, Peng Y, Nie X (2024). Toxic effects of environmentally relevant concentrations of naproxen exposure on Daphnia magna including antioxidant system, development, and reproduction, Aquat Toxicol 266: 106794. DOI: 10.1016/j.aquatox.2023.106794. Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.