J Appl Biomed 23:152-162, 2025 | DOI: 10.32725/jab.2025.013

Secondary metabolites from halotolerant filamentous fungi as potential topical cosmeceutical ingredients

Chi Hoang1, 2, Ha Tran1, Hang Tran1, 2, Diep Hoang3, Quan Nguyen1, 2, Cuong Le1, 2 *
1 Institute of Natural Products Chemistry - Vietnam Academy of Science and Technology, Hanoi, Vietnam
2 Graduate University of Science and Technology - Vietnam Academy of Science and Technology, Hanoi, Vietnam
3 VNU University of Engineering and Technology, Hanoi, Vietnam

The use of natural products in cosmetics and pharmacy has risen dramatically in recent years, leading to the overexploitation of flora and fauna worldwide and threatening the environmental sustainability. Microbe-derived components could help to solve the problem due to their independently controllable cultural property. To investigate the potential of microfungi for producing potential novel cosmeceuticals, cerevisterol (1), aloesol (2), 3β,5α,9α-trihydroxyergosta-7,22-diene-6-one (3), and ergosterol peroxide (4) were isolated from the halotolerant fungal strains Penicillium brefeldianum CL6 and Talaromyces sp. S3-Rt-N3. They were then tested for biological properties, including anti-microbial, tyrosinase inhibitory, and wound healing activities. The results revealed the wound-healing potentials of two fungal compounds - (1) and (2) - in terms of cell proliferation promotion in NIH-3T3 murine fibroblasts, and the tyrosinase inhibitory potential of fungal compounds (1), (3), and (4) in the substrates L-tyrosine and L-3,4-dihydroxyphenylalanine (L-DOPA). Interestingly, compound (1) exhibited antimicrobial activity against acne-causing bacterium Propionibacterium acnes. These results have revealed new prospects for the application of microorganisms-derived compounds, especially in the cosmetics industry.

Keywords: Cosmeceutical; Ergosterol; Halotolerant; Tyrosinase inhibitor; Wound healing
Grants and funding:

This work was financially supported by the Vietnam Academy of Science and Technology under the grant THTETN.02/24-25. The grant financially supported cosmeceutical assays and related studies on isolation and chemical elucidation of compounds from fungal strains Penicillium brefeldianum CL6 and Talaromyces sp. S3-Rt-N3.

Conflicts of interest:

I, as the corresponding author, declare that the results/data/figures in this manuscript are original, and have not been published elsewhere. All research was conducted to the highest ethical standards. All authors are involved in the work. Authors and co-authors reviewed and ensured the accuracy and validity of all the results. All authors declare that they have no conflicts of interest.

Received: December 29, 2023; Revised: September 2, 2025; Accepted: September 18, 2025; Prepublished online: September 23, 2025; Published: September 30, 2025  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Hoang C, Tran H, Tran H, Hoang D, Nguyen Q, Le C. Secondary metabolites from halotolerant filamentous fungi as potential topical cosmeceutical ingredients. J Appl Biomed. 2025;23(3):152-162. doi: 10.32725/jab.2025.013. PubMed PMID: 41026950.
Download citation

References

  1. Agrawal S, Adholeya A, Barrow CJ, Deshmukh SK (2018). Marine fungi: An untapped bioresource for future cosmeceuticals. Phytochem Lett 23: 15-20. DOI: 10.1016/j.phytol.2017.11.003. Go to original source...
  2. Appiah T, Agyare C, Luo Y, Boamah VE, Boakye YD (2020). Antimicrobial and resistance modifying activities of cerevisterol isolated from Trametes species. Curr Bioact Compd 16(2): 115-123. DOI: 10.2174/1573407214666180813101146. Go to original source...
  3. Berridge MV, Herst PM, Tan AS (2005). Tetrazolium dyes as tools in cell biology: new insights into their cellular reduction. Biotechnol Annu Rev 11: 127-152. DOI: 10.1016/S1387-2656(05)11004-7. Go to original source... Go to PubMed...
  4. Chang TS (2009). An updated review of tyrosinase inhibitors. Int J Mol Sci 10(6): 2440-2475. DOI: 10.3390/ijms10062440. Go to original source... Go to PubMed...
  5. Cialdai F, Risaliti C, Monici M (2022). Role of fibroblasts in wound healing and tissue remodeling on Earth and in space. Front Bioeng Biotechnol 10: 958381. DOI: 10.3389/fbioe.2022.958381. Go to original source... Go to PubMed...
  6. Corinaldesi C, Barone G, Marcellini F, Dell'Anno A, Danovaro R (2017). Marine microbial-derived molecules and their potential use in cosmeceutical and cosmetic products. Mar Drugs 15(4): 118. DOI: 10.3390/md15040118. Go to original source... Go to PubMed...
  7. Dorni AC, Amalraj A, Gopi S, Varma K, Anjana SN (2017). Novel cosmeceuticals from plants-An industry guided review. J Appl Res Med Aromat Plants 7: 1-26. DOI: 10.1016/j.jarmap.2017.05.003. Go to original source...
  8. Espinosa-Leal CA, Garcia-Lara S (2019). Current methods for the discovery of new active ingredients from natural products for cosmeceutical applications. Planta Med 85(07): 535-551. DOI: 10.1055/a-0857-6633. Go to original source... Go to PubMed...
  9. Galasso C, Corinaldesi C, Sansone C (2017). Carotenoids from marine organisms: Biological functions and industrial applications. Antioxidants 6(4): 96. DOI: 10.3390/antiox6040096. Go to original source... Go to PubMed...
  10. Gao L, Xu X, Yang J (2013). Chemical constituents of the roots of Rheum officinale. Chem Nat Compd 49: 603-605. DOI: 10.1007/s10600-013-0689-7. Go to original source...
  11. Görünmek M, Ballik B, Cakmak ZE, Cakmak T (2024). Mycosporine-like amino acids in microalgae and cyanobacteria: Biosynthesis, diversity, and applications in biotechnology. Algal Res 80: 103507. DOI: 10.1016/j.algal.2024.103507. Go to original source...
  12. Khatib S, Nerya O, Musa R, Shmuel M, Tamir S, Vaya J (2005). Chalcones as potent tyrosinase inhibitors: the importance of a 2, 4-substituted resorcinol moiety. Bioorg Med Chem 13(2): 433-441. DOI: 10.1016/j.bmc.2004.10.010. Go to original source... Go to PubMed...
  13. Kligman D (2000). Cosmeceuticals. Dermatol Clin 18(4): 609-615. DOI: 10.1016/j.bmc.2004.10.010. Go to original source... Go to PubMed...
  14. Kogej T, Gostinčar C, Volkmann M, Gorbushina AA, Gunde-Cimerman N (2006). Mycosporines in extremophilic fungi-novel complementary osmolytes? Environ Chem 3(2): 105-110. DOI: 10.1071/EN06012. Go to original source...
  15. Krzyczkowski W, Malinowska E, Suchocki P, Kleps J, Olejnik M, Herold F (2009). Isolation and quantitative determination of ergosterol peroxide in various edible mushroom species. Food Chem 113(1): 351-355. DOI: 10.1016/j.foodchem.2008.06.075. Go to original source...
  16. Li X, Kim MK, Lee U, Kim SK, Kang JS, Choi HD, Son BW (2005). Myrothenones A and B, cyclopentenone derivatives with tyrosinase inhibitory activity from the marine-derived fungus Myrothecium sp. Chem Pharm Bull 53(4): 453-455. DOI: 10.1248/cpb.53.453. Go to original source... Go to PubMed...
  17. Liang CC, Park AY, Guan JL (2007). In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nat Protoc 2(2): 329-333. DOI: 10.1038/nprot.2007.30. Go to original source... Go to PubMed...
  18. Libkind D, Moline M, van Broock M (2011). Production of the UVB-absorbing compound mycosporine-glutaminol-glucoside by Xanthophyllomyces dendrorhous (Phaffia rhodozyma). FEMS Yeast Res 11(1): 52-59. DOI: 10.1111/j.1567-1364.2010.00688.x. Go to original source... Go to PubMed...
  19. Lim JY, Ishiguro K, Kubo L (1999). Tyrosinase inhibitory p-coumaric acid from Ginseng leaves. Phytother Res 13(5): 371-375. DOI: 10.1002/(sici)1099-1573(199908/09)13:53.0.co;2-l. Go to original source...
  20. Liu P, Yang Y, Zhou Z, Zhang X, Liu X, Li J (2024). Mitochondrial targeted modification and anticancer mechanism of natural product ergosterol peroxide. Bioorg Chem 151: 107688. DOI: 10.1016/j.bioorg.2024.107688. Go to original source... Go to PubMed...
  21. Majhi S, Das D (2021). Chemical derivatization of natural products: Semisynthesis and pharmacological aspects-A decade update. Tetrahedron 78: 131801. DOI: 10.1016/j.tet.2020.131801. Go to original source...
  22. Moliné M, Arbeloa EM, Flores MR, Libkind D, Farías ME, Bertolotti SG, et al. (2011). UVB photoprotective role of mycosporines in yeast: photostability and antioxidant activity of mycosporine-glutaminol-glucoside. Radiat Res 175(1): 44-50. DOI: 10.1667/rr2245.1. Go to original source... Go to PubMed...
  23. Myers S, Navsaria H, Ojeh N (2014). Skin engineering and keratinocyte stem cell therapy. In: Van Blitterswijk CA, De Boer J (Eds). Tissue Engineering. Academic Press, pp. 497-528. Go to original source...
  24. Nadhilah D, Andriani A, Agustriana E, Nuryana I, Mubarik NR, Dewi KS, et al. (2023). Co-catalysis of melanin degradation by laccase-manganese peroxidase complex from Trametes hirsuta OK271075 for application in whitening cosmetics. Biocatal Biotransfor 42(2): 273-285. DOI: 10.1080/10242422.2023.2188995. Go to original source...
  25. Nosanchuk JD, Stark RE, Casadevall A (2015). Fungal melanin: what do we know about structure? Front Microbiol 6: 1463. DOI: 10.3389/fmicb.2015.01463. Go to original source... Go to PubMed...
  26. Ola AR, Metboki G, Lay CS, Sugi Y, Rozari PD, Darmakusuma D, Hakim EH (2019). Single production of kojic acid by Aspergillus flavus and the revision of flufuran. Molecules 24(22): 4200. DOI: 10.3390/molecules24224200. Go to original source... Go to PubMed...
  27. Orellana EA, Kasinski AL (2016). Sulforhodamine B (SRB) assay in cell culture to investigate cell proliferation. Bio-Protoc 6(21): e1984. DOI: 10.21769/BioProtoc.1984. Go to original source... Go to PubMed...
  28. Palama TL, Khatib A, Choi YH, Payet B, Fock I, Verpoorte R, Kodja H (2009). Metabolic changes in different developmental stages of Vanilla planifolia pods. J Agric Food Chem 57(17): 7651-7658. DOI: 10.1021/jf901508f. Go to original source... Go to PubMed...
  29. Peña OA, Martin P (2024). Cellular and molecular mechanisms of skin wound healing. Nat Rev Mol Cell Biol 25(8): 599-616. DOI: 10.1038/s41580-024-00715-1. Go to original source... Go to PubMed...
  30. Pisano L, Turco M, Supuran CT (2024). Chapter Nine - Biomedical applications of tyrosinases and tyrosinase inhibitors. In: Supuran CT (Ed.). Tyrosinase. London: Elsevier, pp. 261-280. Go to original source...
  31. Pretsch A, Nagl M, Schwendinger K, Kreiseder B, Wiederstein M, Pretsch D, et al. (2014). Antimicrobial and anti-inflammatory activities of endophytic fungi Talaromyces wortmannii extracts against acne-inducing bacteria. PloS One 9(6): e97929. DOI: 10.1371/journal.pone.0097929. Go to original source... Go to PubMed...
  32. Qi S, Guo L, Liang J, Wang K, Liao Q, He S, et al. (2024). A new strategy for the treatment of Parkinson's disease: Discovery and bio-evaluation of the first central-targeting tyrosinase inhibitor. Bioorg Chem 150: 107612. DOI: 10.1016/j.bioorg.2024.107612. Go to original source... Go to PubMed...
  33. Reed RE (1962). The definition of "cosmeceuticals". J Soc Cosmet Chem 13: 103-106.
  34. Sanjeewa KKA, Kim EA, Son KT, Jeon YT (2016). Bioactive properties and potentials cosmeceutical applications of phlorotannins isolated from brown seaweeds: A review.
  35. J Photochem Photobiol B 162: 100-105. DOI: 10.1016/j.jphotobiol.2016.06.027. Go to original source... Go to PubMed...
  36. Schneider CA, Rasband WS, Eliceiri KW (2012). NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9(7): 671-675. DOI: 10.1038/nmeth.2089. Go to original source... Go to PubMed...
  37. Sharma K, Kumar S, Chand K, Kathuria A, Gupta A, Jain R (2011). An update on natural occurrence and biological activity of chromones. Curr Med Chem 18(25): 3825-3852. DOI: 10.2174/092986711803414359. Go to original source... Go to PubMed...
  38. Singh A, Singh D, Kharwar RN, White JF, Gond SK (2021). Fungal endophytes as efficient sources of plant-derived bioactive compounds and their prospective applications in natural product drug discovery: Insights, avenues, and challenges. Microorganisms 9(1): 197. DOI: 10.3390/microorganisms9010197. Go to original source... Go to PubMed...
  39. Vanden Berghe DA, Vlietinck AJ (1991). Screening methods for antibacterial and antiviral agents from higher plants. In: Hostettmann K (Ed.). Methods in Plant Biochemistry. London: Academic Press, pp. 47-69.
  40. Visagie CM, Houbraken J, Frisvad JC, Hong SB, Klaasen C HW, Perrone G, et al. (2014). Identification and nomenclature of the genus Penicillium. Stud Mycol 78: 343-371. DOI: 10.1016/j.simyco.2014.09.001. Go to original source... Go to PubMed...
  41. Volkmann M, Gorbushina AA (2006). A broadly applicable method for extraction and characterization of mycosporines and mycosporine-like amino acids of terrestrial, marine and freshwater origin. FEMS Microbiol Lett 255(2): 286-295. DOI: 10.1111/j.1574-6968.2006.00088.x. Go to original source... Go to PubMed...
  42. Wang Y, Xiong B, Xing S, Chen Y, Liao Q, et al. (2023). Medicinal prospects of targeting tyrosinase: A feature review. Curr Med Chem 30(23): 2638-2671. DOI: 10.2174/0929867329666220915123714. Go to original source... Go to PubMed...
  43. Wong HJ, Mohamad-Fauzi N, Rizman-Idid M, Convey P, Alias SA (2019). Protective mechanisms and responses of micro-fungi towards ultraviolet-induced cellular damage. Polar Sci 20(Part 1): 19-34. DOI: 10.1016/j.polar.2018.10.001. Go to original source...
  44. White TJ, Bruns TD, Lee SB, Taylor JW (1990). Amplifcation and direct sequencing of fungal ribosomal RNA genes forphylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (Eds). PCR Protocols: A Guide to Methods and Applications. New York: Academic Press, pp. 315-322. Go to original source...
  45. Wu B, Oesker V, Wiese J, Schmaljohann R, Imhoff JF (2014). Two new antibiotic pyridones produced by a marine fungus, Trichoderma sp. strain MF106. Mar Drugs 12(3): 1208-1219. DOI: 10.3390/md12031208. Go to original source... Go to PubMed...
  46. Wu B, Wu X, Sun M, Li M (2013). Two novel tyrosinase inhibitory sesquiterpenes induced by CuCl2 from a marine-derived fungus Pestalotiopsis sp. Z233. Mar Drugs 11(8): 2713-2721. DOI: 10.3390/md11082713. Go to original source... Go to PubMed...
  47. Xiong HY, Fei DQ, Zhou JS, Yang CJ, Ma GL (2009). Steroids and other constituents from the mushroom Armillaria lueo-virens. Chem Nat Compd 45: 759-761. DOI: 10.1007/s10600-009- 9456-1. Go to original source...
  48. Ye K, Ai HL, Liu JK (2021). Identification and bioactivities of secondary metabolites derived from endophytic fungi isolated from ethnomedicinal plants of Tujia in Hubei province: a review. Nat Prod Bioprospecting 11(2): 185-205. DOI: 10.1007/s13659-020-00295-5. Go to original source... Go to PubMed...
  49. Yilmaz N, Visagie C M, Houbraken J, Frisvad JC, Samson RA (2014). Polyphasic taxonomy of the genus Talaromyces. Stud Mycol 78: 175-341. DOI: 10.1016/j.simyco.2014.08.001. Go to original source... Go to PubMed...
  50. Zhang X, Kang X, Jin L, Bai J, Liu W, Wang Z (2018). Stimulation of wound healing using bioinspired hydrogels with basic fibroblast growth factor (bFGF). Int J Nanomedicine 13: 3897. DOI: 10.2147/IJN.S168998. Go to original source... Go to PubMed...
  51. Zhang ZY, Jin B, Kelly JM (2007). Production of lactic acid from renewable materials by Rhizopus fungi. Biochem Eng J 35(3): 251-263. DOI: 10.1016/j.bej.2007.01.028. Go to original source...
  52. Zhou X, Brown BA, Siegel AP, El Masry MS, Zeng X, Song W, et al. (2020). Exosome-mediated crosstalk between keratinocytes and macrophages in cutaneous wound healing. ACS Nano 14(10): 12732-12748. DOI: 10.1021/acsnano.0c03064. Go to original source... Go to PubMed...
  53. Zhu H, Qu F, Zhu LH (1993). Isolation of genomic DNAs from plants, fungi and bacteria using benzyl chloride. Nucleic Acids Res 21(22): 5279-2580. DOI: 10.1093/nar/21.22.5279. Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.