J Appl Biomed 1:1-5, 2003 | DOI: 10.32725/jab.2003.001
Excitotoxicity and the putative involvement of excitatory amino acids in neurodegenerative diseases
- Laboratoire de Neurobiologie Cellulaire et Fonctionnelle CNRS, Université de la Mediterranée II, Marseille, France
Excitatory amino acids (EAA) represent major brain neurotransmitters. They are present in numerous neuronal systems and thus are involved in almost all aspects of normal and pathological brain activity. Changes in EAA transmission have been associated with the functional impairments characterizing major neurological disorders, including epilepsy and schizophrenia. There is also a suspicion that EAA systems underlie the neuronal death associated not only with acute CNS insults, such as in ischemia or post-traumatic lesions, but also with neurodegenerative diseases such as ALS, Huntington's disease and Parkinson's disease. The neurotoxicity of EAA, referred to as excitotoxicity, is presumably mediated primarily through an excess of EAA synaptic receptor stimulation. Indeed, overstimulation of the ionotropic NMDA or AMPA/kainate receptor subtypes has been shown to produce an intense membrane depolarisation and further a massive increase in intracellular calcium leading to cell damage. The extreme diversity and specific pattern of expression of EAA receptor subunits could account for the differential vulnerability of certain brain areas to such excitotoxic processes. In addition, it is now believed that besides abnormalities in receptor functioning or in release processes, alterations in EAA transmission may result from dysfunction of the EAA uptake system, which represents the mechanism for EAA removal from the synapse. From the five transporter proteins cloned, termed EAAT1-5, the primarily glial transporters EAAT1 and EAAT2 have been shown to mediate the bulk of EAA uptake in the brain and it has then been suggested that they play a major role in the prevention of excitotoxic processes. In this respect, the degeneration of motor neurons in ALS has been associated with altered expression or inactivation of EAAT2. Moreover, recent evidence has been provided that pharmacological alteration of glutamate transport can also induce astrocyte degeneration, as observed in neurodegenerative insults, but through a mechanism independent of stimulation of EAA receptors. Thus, one can obviously consider that these EAATs can represent a key target for further development of new neuroprotective agents.
Keywords: neurodegenerative diseases; signalling pathways; excitatory amino acids; neurotoxicity; striatal neurodegeneration
Published: March 31, 2003 Show citation
References
- Arriza J. L., Eliasof S., Kavanaugh M. P., Amara S. G., Proc. Natl. Acad Sci. USA 94: 4155, 1997.
Go to original source...
Go to PubMed...
- Arzberger T., Krampfl K., Leimgruber S., Weindl A., J. Neuropathol. Exp. Neurol. 56: 440, 1997.
Go to original source...
Go to PubMed...
- Barks J. D. E. and Silverstein F. S., Mol. Chem. Neuropathol. 23: 201, 1994.
Go to original source...
Go to PubMed...
- Bellochio E. E., Hu H., Pohorille A., Chan J., Pickel V. M., Edwards R. H., J. Neurosci. 18: 8648, 1998.
Go to original source...
Go to PubMed...
- Bellochio E. E., Reimer R. J., Freneau R. T., Edwards R. H., Science 289: 847,2000.
Go to original source...
- Bigge C. F., Curr. Opin. Chem. Biol. 3: 441, 1999.
Go to original source...
Go to PubMed...
- Bristol L. A. and Rothstein J. D., Ann. Neurol. 39: 676,1996.
Go to original source...
Go to PubMed...
- Casado M., Bendahan A., Zafra F., Danbolt N. C., Aragon C., Gimenez C., Kanner B. I., J. Biol. Chem. 268: 27313, 1993.
Go to original source...
- Curtis D. R., Phillips J. W., Watkins J. C., Nature 183: 611, 1959.
Go to original source...
Go to PubMed...
- Danbolt N. C., Progr. Neurobiol. 65: 1, 2001.
Go to original source...
Go to PubMed...
- Doble A., Pharmacol. Ther. 81: 163, 1999.
Go to original source...
Go to PubMed...
- Had-Aissouni L., Ré D., A t-Mamar H., Samuel D., Shimamoto K., Kerkerian-Le Goff L., Birman S., Rev. Neurol., Spec. issue 24-17 May, Abstract P202, 2000.
- Kanai Y. and Hediger M. A., Nature 360: 467, 1992.
Go to original source...
Go to PubMed...
- Kim J. P. and Choi D. W., Neuroscience 23: 423, 1987.
Go to original source...
Go to PubMed...
- Lee L. Y., Sawin E. R., Chalfie M., Horvitz H. R., Avery L., J. Neurosci. 19: 159, 1999.
Go to original source...
Go to PubMed...
- Lievens J. C., Bernal F., Forni C., Mahy N., Kerkerian-Le Goff L., Glia 29: 222, 2000.
Go to original source...
Go to PubMed...
- Lortet S., Samuel D., Had-Aissouni L., Masmejan F., Kerkerian-Le Goff L., Pisano P., Neuropharmacology 38: 395, 1999.
Go to original source...
Go to PubMed...
- Lucas D. R. and Newhouse J. P., AMA Arch. Ophtalmol. 58: 193, 1957.
Go to original source...
Go to PubMed...
- Martin L. J., Brambrink A. M., Lehmann C., Portera-Cailliau C., Koelher R., Rothstein J. D., Traystman R. J., Ann. Neurol. 42: 335, 1997.
Go to original source...
Go to PubMed...
- Nicholls D. and Attwell D., Trends Pharmacol. Sci. 11: 462, 1990.
Go to original source...
Go to PubMed...
- Olney J. W., In D. Lodge (ed): Excitatory amino acids in health and disease. John Wiley 1988, p. 337.
- Roberts P. J., Neuropharmacology 34: 813, 1995.
Go to original source...
Go to PubMed...
- Rossi D. J., Oshima T., Attwell D., Nature 403: 316, 2000.
Go to original source...
Go to PubMed...
- Rothstein J. D., Dykes-Hoberg M., Pardo C. A., Bristol L. A., Jin L., Kunel R., Kanai Y., Hediger M. A., Wang Y., Scielke J., Welty D. F., Neuron 16: 675, 1996.
Go to original source...
Go to PubMed...
- Rothstein J. D., Martin L. J., Kuncl R. W., New England J. Med. 326: 1464, 1992.
Go to original source...
Go to PubMed...
- Takamori S., Rhee J. S., Rosenmund C., Jahn R., Nature 407: 141, 2000.
Go to original source...
Go to PubMed...
- Vanderberg R. J., Clin. Exp. Pharmacol. Physiol. 25: 393, 1998.
Go to original source...
Go to PubMed...