J Appl Biomed 4:45-52, 2006 | DOI: 10.32725/jab.2006.003

Calreticulin and cellular adhesion/migration-specific signalling pathways

Eva Szabo*, Sylvia Papp, Michal Opas
Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada

Calreticulin is a Ca2+-binding protein of the ER/SR, from where it acts as a chaperone, and affects calcium homeostasis, gene expression and cell adhesion. Cell adhesion to the extracellular matrix can generate transmembrane signals important for cell survival and migration. In a variety of cell types, integrin stimulation by ECM proteins, such as fibronectin, leads to changes in intracellular protein tyrosine phosphorylation. Tyrosine phosphorylation leads to the co-localization of focal adhesion kinase, vinculin and paxillin at focal contacts. Interaction between focal adhesion kinase and paxillin is critical for the activation of signaling cascades involved in cell survival and motility. Fibroblasts either over- or underexpressing calreticulin show differences in their adhesive properties, which are related to the calmodulin/CaMKII pathway. Inhibition of these pathways causes the weekly adhesive calreticulin underexpressing cells to behave like the calreticulin overexpressers, through increased spreading and increased levels of focal adhesion kinase, paxillin and fibronectin. We propose that calreticulin, via its Ca2+-homeostatic effects, may affect fibronectin synthesis and matrix assembly by modulating fibronectin gene expression, and by influencing formation of cellular adhesions, both of which are instrumental in matrix assembly and remodelling. Interestingly, it appears that besides the calmodulin/CaMKII pathway, differential calreticulin expression also modulates the c-src pathway.

Keywords: adhesion; motility; calreticulin; src; calmodulin; CamK II

Received: July 15, 2005; Published: March 31, 2006  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Szabo E, Papp S, Opas M. Calreticulin and cellular adhesion/migration-specific signalling pathways. J Appl Biomed. 2006;4(1):45-52. doi: 10.32725/jab.2006.003.
Download citation

References

  1. Bastianutto C., Clementi E., Codazzi F. et al.: Overexpression of calreticulin increases the Ca2+ capacity of rapidly exchanging Ca2+ stores and reveals aspects of their lumenal microenvironment and function. J. Cell Biol. 130:847-855, 1995. Go to original source... Go to PubMed...
  2. Basu S., Binder R.J., Ramalingam T., Srivastava P.K.: CD91 is a common receptor for heat shock proteins gp96, hsp90, hsp70, and calreticulin. Immunity 14:303-313, 2001. Go to original source... Go to PubMed...
  3. Belcheva M.M., Clark A.L., Haas P.D. et al.: Mu and kappa opioid receptors activate ERK/MAPK via different protein kinase C isoforms and secondary messengers in astrocytes. J. Biol. Chem. 280:27662-27669, 2005. Go to original source... Go to PubMed...
  4. Bouvard D., Molla A., Block M.R.: Calcium/calmodulin-dependent protein kinase II controls alpha5beta1 integrin-mediated inside-out signaling. J. Cell Sci. 111:657-665, 1998. Go to original source... Go to PubMed...
  5. Brown M.C., Perotta J.A., Turner C.E.: Serine and threonine phosphorylation of the paxillin LIM domains regulates paxillin focal adhesion localization and cell adhesion to fibronectin. Mol. Biol. Cell 9:1803-1816, 1998. Go to original source...
  6. Burridge K., Chrzanowska-Wodnicka M.: Focal adhesions, contractility, and signalling. Annu. Rev. Cell Dev. Biol. 12: 463-518, 1996. Go to original source... Go to PubMed...
  7. Burridge K., Turner C.E., Romer L.H.: Tyrosine phosphorylation of paxillin and pp125FAK accompanies cell adhesion to extracellular matrix: A role in cytoskeletal assembly. J. Cell Biol. 119:893-903, 1992. Go to original source... Go to PubMed...
  8. Camacho P., Lechleiter J.D.: Calreticulin inhibits repetitive intracellular Ca2+ waves. Cell 82: 765-771, 1995. Go to original source... Go to PubMed...
  9. Coppolino M.G., Woodside M.J., Demaurex N. et al.: Calreticulin is essential for integrin-mediated calcium signalling and cell adhesion. Nature 386:843-847, 1997. Go to original source... Go to PubMed...
  10. Coppolino M., Leung-Hagesteijn C., Dedhar S., Wilkins J.: Inducable interaction of integrin α2β1 with calreticulin-dependence on the activation state of the integrin. J. Biol. Chem. 270:23132-23138, 1995. Go to original source... Go to PubMed...
  11. Crawford A.W., Michelson J.W., Beckerle M.C.: An interactionbetween zyxin and α-actinin. J. Cell Biol. 116:1381-1393, 1992. Go to original source... Go to PubMed...
  12. Dai E., Stewart M., Ritchier B. et al.: Calreticulin, a potential vascular regulatory protein, reduces intimal hyperplasia after arterial injury. Arterioscler. Thromb. Vasc. Biol. 17:2359-2368, 1997. Go to original source... Go to PubMed...
  13. Darby P.J., Kwan C.Y., Daniel E.E.: Caveolae from canine airway smooth muscle contain the necessary components for a role in Ca(2+) handling. Am. J. Physiol Lung Cell Mol. Physiol. 279:L1226-L123, 2000. Go to original source... Go to PubMed...
  14. Dedhar S.: Novel functions of calreticulin: interaction with integrins and modulation of gene expression. Trends Biochem. Sci. 19:269-271, 1994. Go to original source... Go to PubMed...
  15. Eggleton P., Reid K.B.M., Kishore U., Sontheimer R.D.: Clinical relevance of calreticulin in systemic lupus erythematosus. Lupus 6:564-571, 1997. Go to original source... Go to PubMed...
  16. Fadel M.P., Dziak E., Lo C.M. et al.: Calreticulin affects focal contact-dependent but not close contact-dependent cell-substratum adhesion. J. Biol. Chem. 274:15085-15094, 1999. Go to original source... Go to PubMed...
  17. Fadel M.P., Szewczenko-Pawlikowski M., Leclerc P. et al.: Calreticulin affects beta-catenin associated pathways. J. Biol. Chem. 276:27083-27089, 2001. Go to original source... Go to PubMed...
  18. Fasolato C., Pizzo P., Pozzan T.: Delayed activation of the store-operated calcium current induced by calreticulin overexpression in RBL-1 cells. Mol. Biol. Cell 9:1513-1522, 1998. Go to original source... Go to PubMed...
  19. Ghiran I., Klickstein L.B., Nicholson-Weller A.: Calreticulin is at the surface of circulating neutrophils and uses CD59 as an adaptor molecule. J. Biol. Chem. 278:21024-21031, 2003. Go to original source... Go to PubMed...
  20. Goicoechea S., Orr A.W., Pallero M.A. et al.: Thrombospondin mediates focal adhesion disassembly through interactions with cell surface calreticulin. J. Biol. Chem. 275:36358-36368, 2000. Go to original source... Go to PubMed...
  21. Goicoechea S., Pallero M.A., Eggleton P. et al.: The anti-adhesive activity of thrombospondin is mediated by the N-terminal domain of cell surface calreticulin. J. Biol. Chem. 277:37219-37228, 2002. Go to original source... Go to PubMed...
  22. Helenius A., Trombetta E.S., Hebert D.N., Simons J.M.: Calnexin, calreticulin and the folding of glycoproteins. Trends Cell Biol. 7:193-200, 1997. Go to original source...
  23. Huang C., Jacobson K., Schaller M.D.: MAP kinases and cell migration. J. Cell Sci. 117:4619-4628, 2004. Go to original source... Go to PubMed...
  24. Hutzfeld M.: The armadillo family of structural proteins. Int. Rev. Cytol. 186:179-224, 1999. Go to original source... Go to PubMed...
  25. Ilic D., Damsky C.H., Yamamoto T.: Focal adhesion kinase: at the crossroads of signal transduction. J. Cell Sci. 110:401-407, 1997. Go to original source... Go to PubMed...
  26. Illario M., Cavallo A.L., Monaco S. et al.: Fibronectin-induced proliferation in thyroid cells is mediated by alpha v beta3 integrin through Ras/Raf-1/MEK/ERK and calcium/CaMKII signals. J. Clin. Endocrinol. Metab. 90:2865-2873, 2005. Go to original source... Go to PubMed...
  27. Ishibe S., Joly D., Liu Z.X., Cantley L.G.: Paxillin serves as an ERK-regulated scaffold for coordinating FAK and Rac activation in epithelial morphogenesis. Mol. Cell. 16:257-267, 2004. Go to original source... Go to PubMed...
  28. Jouaville L.S., Ichas F., Holmuhamedov E.L. et al.: Synchronization of calcium waves by mitochondrial substrates in Xenopus laevis oocytes. Nature 377:438-441, 1999. Go to original source...
  29. Juliano R.L., Haskill S.: Signal transduction from the extracellular matrix. J. Cell Biol. 120:577-55, 1993. Go to original source... Go to PubMed...
  30. Kornberg L., Juliano R.L.: Signal trasduction from the extracellular matrix: The integrin-tyrosine kinase connection. Trends Pharmacol. Sci. 13:93-95, 1992. Go to original source... Go to PubMed...
  31. Kuwabara K., Pinsky D.J., Schmidt A.M. et al.: Calreticulin, an antithrombotic agent which binds to vitamin K-dependent coagulation factors, stimulates endothelial nitric oxide production, and limits thrombosis in canine coronary arteries. J. Biol. Chem. 270:8179-8187, 1995. Go to original source... Go to PubMed...
  32. Liu N., Fine R.E., Simons E., Johnson R.J.: Decreasing calreticulin expression lowers the Ca2+ response to bradykinin and increases sensitivity to ionomycin in NG-108-15 cells. J. Biol. Chem. 269:28635-28639, 1994. Go to original source...
  33. Lockwich T.P., Liu X., Singh B.B. et al.: Assembly of Trp1 in a signaling complex associated with caveolin-scaffolding lipid raft domains. J. Biol. Chem. 275: 11934-11942, 2000. Go to original source... Go to PubMed...
  34. Lockwich T.P., Singh B.B., Liu X., Ambudkar I.S.: Stabilization of cortical actin induces internalization of Trp3-associated caveolar Ca2+ signaling complex and loss of Ca2+ influx without disruption of Trp3-IP3R association. J. Biol. Chem. 276:42401-42408, 2001. Go to original source... Go to PubMed...
  35. McGreal E., Gasque P.: Structure-function studies of the receptors for complement C1q. Biochem. Soc. Trans. 30:1010-1014, 2001. Go to original source...
  36. Meldolesi J., Pozzan T.: The heterogeneity of ER Ca2+ stores has a key role in nonmuscle cell signaling and function. J. Cell Biol. 142:1395-1398, 1998. Go to original source... Go to PubMed...
  37. Mery L., Mesaeli N., Michalak M. et al.: Overexpression of calreticulin increases intracellular Ca2+-storage and decreases store-operated Ca2+ influx. J. Biol. Chem. 271:9332-9339, 1996. Go to original source... Go to PubMed...
  38. Michalak M., Burns K., Mesaeli N. et al.: Endoplasmic reticulum form of calreticulin modulates glucacorticoid-sensitive gene expression. J. Biol. Chem. 271:29436-26445, 1996. Go to original source... Go to PubMed...
  39. Michalak M., Parker J.M.R., Opas M.: Ca2+ signaling and calcium binding chaperones of the endoplasmic reticulum. Cell Calcium 32:269-278, 2002. Go to original source... Go to PubMed...
  40. Ogden C.A., deCathelineau A., Hoffmann P.R. et al.: C1q and mannose binding lectin engagement of cell surface calreticulin and cd91 initiates macropinocytosis and uptake of apoptotic cells. J. Exp. Med. 194:781-796, 2001. Go to original source... Go to PubMed...
  41. Orr A.W., Pedraza E.C., Pallero M.A. et al.: Low density lipoprotein receptor-related protein is a calreticulin coreceptor that signals focal adhesion disassembly. J. Cell Biol. 161:1179-1189, 2003. Go to original source... Go to PubMed...
  42. Orr A.W., Elzie C.A., Kucik F.D., Murphy-Ullrich J.E.: Thrombospondin signalling through the calreticulin/LDL receptor-related protein co-complex stimulates random and directed cell migration. J. Cell Sci. 116:2917-2927, 2003. Go to original source... Go to PubMed...
  43. Orr A.W., Pallero M.A., Murphy-Ullrich J.E.: Thrombospondin stimulates focal adhesion disassembly through Gi- and phosphoinositide 3-kinase-dependent ERK activation. J. Biol. Chem. 277:20453-20460, 2002. Go to original source... Go to PubMed...
  44. Opas M., Szewczenko-Pawlikowski M., Jass G.K. et al.: Calreticulin modulates cell adhesiveness via regulation of vinculin expression. J. Cell Biol. 135:1913-1923, 1996. Go to original source...
  45. Otey C.A.: pp125FAKin the focal adhesion. Int. Rev. Cytol. 167:161-183, 1996. Go to original source... Go to PubMed...
  46. Papp S., Opas M.: Subcellular distribution of calreticulin. In Eggleton P., Michalak M. (eds.): Calreticulin. Landes Bioscience, Georgetown 2003, pp. 38-48. Go to original source...
  47. Papp S., Dziak E., Michalak M., Opas M.: Is all of the endoplasmic reticulum created equal? The effect of the heterogeneous distribution of endoplasmic reticulum Ca2+-handling protein. J. Cell. Biol. 160:475-479, 2003. Go to original source... Go to PubMed...
  48. Papp S., Fadel M., Opas M.: ER-to-cell surface signalling: calreticulin and cell adhesion. J. Appl. Biomed. 2:1-14, 2004. Go to original source...
  49. Parodi A.J.: Role of N-oligosaccharide endoplasmic reticulum processing reactions in glycoprotein folding and degradation. Biochem. J. 348 Pt 1:1-13, 2000. Go to original source...
  50. Petersen O.H., Tepikin A., Park M.K.: The endoplasmic reticulum: one continuous or several separate Ca2+ stores? Trends Neurosci. 24:271-276, 2001. Go to original source... Go to PubMed...
  51. Pike S.E., Yao L., Setsuda J. et al.: Calreticulin and calreticulin fragments are endothelial cell inhibitors that suppress tumor growth. Blood 94:2461-2468, 1999. Go to original source...
  52. Pike S.E., Yao L., Jones K.D. et al.: Vasostatin, a calreticulin fragment, inhibits angiogenesis and suppresses tumor growth. J. Exp. Med. 188:2349-2356, 1998. Go to original source... Go to PubMed...
  53. Putney J.W., Jr.: "Kissin' cousins": intimate plasma membrane-ER interactions underlie capacitative calcium entry. Cell 99:5-8, 1999. Go to original source... Go to PubMed...
  54. Putney J.W. Jr.: Capacitative calcium entry: sensing the calcium stores. J. Cell Biol. 169:381-382, 2005. Go to original source... Go to PubMed...
  55. Sacks D.B., Fujita-Yamaguchi Y., Gale R.D., McDonald J.M.: Tyrosine-specific phosphorylation of calmodulin by the insulin receptor kinase purified from human placenta. Biochem. J. 263:803-812, 1989. Go to original source... Go to PubMed...
  56. Sastry S.K., Burridge K.: Focal adhesion: a nexus for intracellular signalling and cytoskeletal dynamics. Exp. Cell Res. 261:25-36, 2000. Go to original source... Go to PubMed...
  57. Sugiyama T., Matsuda Y., Mikoshiba K.: Inositol 1,4,5-trisphosphate receptor associated with focal contact cytoskeletal proteins. FEBS Lett. 466:29-34, 2000. Go to original source... Go to PubMed...
  58. Vandivier R.W., Ogden C.A., Fadok V.A. et al.: Role of surfactant proteins A, D, and C1q in the clearance of apoptotic cells in vivo and in vitro: calreticulin and CD91 as a common collectin receptor complex. J. Immunol. 169:3978-3986, 2002. Go to original source... Go to PubMed...
  59. Volonté D., Galbiati F., Pestell R.G., Lisanti M.P.: Cellular stress induces the tyrosine phosphorylation of caveolin-1 (Tyr14) via activation of p38 mitogen-activated protein kinase and c-Src kinase - evidence for caveolae, the actin cytoskeleton, and focal adhesions as mechanical sensors of osmotic stress. J. Biol. Chem. 276:8094-8103, 2001. Go to original source... Go to PubMed...
  60. Wei Y., Yang X.W., Liu Q.M. et al.: A role for caveolin and the urokinase receptor in integrin-mediated adhesion and signaling. J. Cell Biol. 144:1285-1294, 1999. Go to original source... Go to PubMed...
  61. Wen Z., Guirland C., Ming G.L., Zheng J.Q.: A CaMKII/calcineurin switch controls the direction of Ca2+-dependent growth cone guidance. Neuron 43:835-846, 2004. Go to original source... Go to PubMed...
  62. White T.K., Zhu Q., Tanzer M.L.: Cell surface calreticulin is a putative mannoside lectin which triggers mouse melanoma cell spreading. J. Biol. Chem. 270:15926-15929, 1995. Go to original source... Go to PubMed...
  63. Xu W., Longo F.J., Wintermantel M.R. et al.: Calreticulin modulates capacitative Ca2+ influx by controlling the extent of inositol 1,4,5-trisphosphate-induced Ca2+ store depletion. J. Biol. Chem. 275:36676-36682, 2000. Go to original source... Go to PubMed...
  64. Zhu Q., Zelinka P., White T., Tanzer M.L.: Calreticulin-integrin bidirectional signaling complex. Biochem. Biophys. Res. Commun. 232:354-358, 1997. Go to original source... Go to PubMed...