J Appl Biomed 10:195-209, 2012 | DOI: 10.2478/v10136-012-0009-8

Antioxidative/oxidative effects of strontium-doped bioactive glass as bone graft. In vivo assays in ovariectomised rats

Samira Jebahi1,2, Hassane Oudadesse1,*, Hafed el Feki3, Tarek Rebai4, Hassib Keskes4, Pascal Pellen1, Abdelfattah el Feki2
1 University of Rennes 1, UMR CNRS 6226, Campus de Beaulieu, 35042 Rennes, France
2 Animal Ecophysiology Laboratory, Sfax Faculty of Science, Department of Life Sciences, Sfax, Tunisia
3 Science Materials and Environement laboratory, Sfax Faculty of Science, Sfax, Tunisia
4 Histology, Orthopaedic and Traumatology laboratory Sfax Faculty of Medicine Sfax, Tunisia

Recently, oxidative stress has been identified as a pivotal pathological factor inducing bone osteoporosis. This phenomenon is responsible for low bone density. It alters bone quality and generates bone fractures. Strontium is found to induce osteoblast activity by stimulating bone formation and reducing bone resorption by restraining osteoclasts. Bioglass (BG) has been used to repair bone defects, and, in combination with strontium (BG-Sr), offers an opportunity to treat this disease. This study investigated the potential role of BG-Sr in improving antioxidant activity and regenerative bone capacity, The effects of both BG-Sr and BG were tested on osteoblast SaOS2 and endothelial EAhy926 cell proliferation in vitro. In vivo, BG-Sr and BG were implanted in the femoral condyles of Wistar rats and compared to that of control groups. Cell proliferation increased significantly by 120% at SaOS2 and 127% at EAhy926. Superoxide Dismutase (SOD), Catalase (CAT) and Glutathione Peroxidase (GPx) were significantly enhanced in BG-Sr treated rats compared to other groups. Moreover, a significant decrease of thiobarbituric acid-reactive substances (TBARs) was observed. The Ca/P ratio increase improved progressive bone mineralization. According to these results, BG-Sr ameliorated cell proliferation and developed an antioxidative defense against ROS. The histological findings highlight the BG-Sr implications in the osteoporosis treatment confirmed by bone construction. The development of BG-Sr as a therapeutic biomaterial protecting against oxidative stress might make an effective choice for application in tissue engineering.

Keywords: oxidative stress; osteoporosis; strontium-substituted bioactive glasses; free radical; bone regeneration

Received: November 9, 2011; Revised: January 5, 2012; Published: July 31, 2012  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Jebahi S, Oudadesse H, el Feki H, Rebai T, Keskes H, Pellen P, el Feki A. Antioxidative/oxidative effects of strontium-doped bioactive glass as bone graft. In vivo assays in ovariectomised rats. J Appl Biomed. 2012;10(4):195-209. doi: 10.2478/v10136-012-0009-8.
Download citation

References

  1. Aebi H. Catalase in vitro. Methods Enzymol. 105: 121-126, 1984. Go to original source... Go to PubMed...
  2. Anderson JM, Rodriguez A, Chang DT. Foreign body reaction to biomaterials. Semin Immunol. 20: 86-100, 2008. Go to original source... Go to PubMed...
  3. Anselme K. Osteoblast adhesion on biomaterials. Biomaterials. 21: 667-681, 2000. Go to original source... Go to PubMed...
  4. Buege JA, Aust SD. Microsomal lipid peroxidation. Methods Enzymol. 105: 302-310, 1984. Go to original source... Go to PubMed...
  5. Caverzasio J, Thouverey C. Activation of FGF receptors is a new mechanism by which strontium ranelate induces osteoblastic cell growth. Cell Physiol Biochem. 27: 243-250, 2011. Go to original source... Go to PubMed...
  6. Chesnut Ch 3rd, Silverman S, Andriano K, Genant H, Gimona A, Harris S, Kiel D, LeBoff M, Maricic M, Miller P, Moniz C, Peacock M et al. A randomised trial of nasal spray salmon calcitonin in postmenopausal women with established osteoporosis: the prevent recurrence of osteoporotic fractures study. Am J Med. 109: 267-276, 2000. Go to original source... Go to PubMed...
  7. Collette J, Bruyère O, Kaufman JM, Lorenc R, Felsenberg D, Spector TD, Diaz-Curiel M, Boonen S, Reginster J-Y. Vertebral anti-fracture efficacy of strontium ranelate according to pre-treatment bone turnover. Osteoporos Int. 21: 233-241, 2010. Go to original source... Go to PubMed...
  8. Effah Kaufmann EA, Ducheyne P, Shapiro IM. Evaluation of osteoblast response to porous bioactive glass (45S5) substrates by RT-PCR analysis. Tissue Eng. 6: 19-28, 2000. Go to original source... Go to PubMed...
  9. Gentleman E, Fredholm YC, Jell G, Lotfibakhshaiesh N, O'Donnell MD, Hill RG, Stevens MM. The effects of strontium-substituted bioactive glasses on osteoblasts and osteoclasts in vitro. Biomaterials. 31: 3949-3956, 2010. Go to original source... Go to PubMed...
  10. Greenspan DC, Hench LL. Chemical and mechanical behaviour of bioglass-coated alumina. J Biomed Mater Res. 10: 503-509, 1976. Go to original source... Go to PubMed...
  11. Grynpas MD, Hamilton E, Cheung R, Tsouderos Y, Deloffre P, Hott M, Marie PJ. Strontium Increases Vertebral Bone Volume in Rats at a Low Dose That Does Not Induce Detectable Mineralization Defect. Bone. 18: 253-259, 1996. Go to original source... Go to PubMed...
  12. Hamdy NA. Strontium ranelate improves bone microarchitecture in osteoporosis. Rheumatology. 48: 9-13, 2009. Go to original source... Go to PubMed...
  13. Hench LL. Bioceramics. J Am Ceram Soc. 81: 1705-1728, 1998. Go to original source...
  14. Hench LL, Splinter RJ, Allen WC, Greenlee TK, Jr. Bonding mechanisms at the interface of ceramic prosthetic materials. J Biomed Mater Res Symp. 2: 117-141, 1971. Go to original source...
  15. Hensley K, Robinson KA, Gabbita SP, Salsman S, Floyd RA. Reactive oxygen species, cell signaling, and cell injury. Free Radic Biol Med. 28: 1456-1462, 2000. Go to original source... Go to PubMed...
  16. Hojjatie B, Anusavice KJ. Three-dimensional finite element analysis of glass-ceramic dental crowns. J Biomech. 23: 1157-1166, 1990. Go to original source... Go to PubMed...
  17. Isomura H, Fujie K, Shibata K, Inoue N, Iizuka T, Takebe G, Takahashi K, Nishihira J, Izumi H, Sakamoto W. Bone metabolism and oxidative stress in postmenopausal rats with iron overload. Toxicology. 19: 93-100, 2004. Go to original source... Go to PubMed...
  18. Izquierdo-Barba I, Arcos D, Sakamoto Y, Terasaki O, Lopez-Noriega A, Vallet-Regí M. High-performance mesoporous boceramics mimicking bone mineralization. Chem Mater. 20: 3191-3198, 2008. Go to original source...
  19. Jallot E, Benhayoune H, Kilian L, Irigaray JL, Balossier G, Bonhomme P. Growth and dissolution of apatite precipitates formed in vivo on the surface of a bioactive glass coating film and its relevance to bioactivity. J Phys D Appl Phys. 33: 2775-2780, 2000. Go to original source...
  20. Jell G, Stevens MM. Gene activation by bioactive glasses. J Mater Sci Mater Med. 17: 997-1002. 2006. Go to original source... Go to PubMed...
  21. Jell G, Notingher I, Tsigkou O, Notingher P, Polak JM, Hench LL, Stevens MM. Bioactive glass-induced osteoblast differentiation: a noninvasive spectroscopic study. J Biomed Mater Res A. 86: 31-40, 2008. Go to original source... Go to PubMed...
  22. Jones J R, Gentleman E, Polak J. Bioactive Glass Scaffolds for Bone Regeneration. Elements. 3: 393-399. 2007. Go to original source...
  23. Kaviarasan K, Kalaiarasi P, Pugalendi V. Antioxidant efficacy of flavonoid-rich fraction from Spermacoce hispida in hyperlipidemic rats. J Appl Biomed. 6: 165-176, 2008. Go to original source...
  24. Kono Y, Fridovich I. Superoxide radical inhibits catalase. J Biol Chem. 257: 5751-5754. 1982. Go to original source... Go to PubMed...
  25. Lean JM, Jagger CJ, Kirstein B, Fuller K, Chambers TJ. Hydrogen peroxide is essential for estrogen-deficiency bone loss and osteoclast formation. Endocrinology. 146: 728-735, 2005. Go to original source... Go to PubMed...
  26. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with Folin phenol reagent. J Biol Chem. 193: 265-275, 1951. Go to original source... Go to PubMed...
  27. Lusvardi G, Zaffe D, Menabue L, Bertoldi C, Malavasi G, Consolo U. In vitro and in vivo behaviour of zinc-doped phosphosilicate glasses. Acta Biomater. 5: 419-428, 2009. Go to original source... Go to PubMed...
  28. Marklund S, Marklund G. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and convenient assay for superoxide dismutase. Eur J Biochem. 47: 469-474, 1975. Go to original source... Go to PubMed...
  29. Meunier PJ, Roux C, Seeman E, Ortolani S, Badurski JE, Spector TD, Cannata J, Balogh A, Lemmel EM, Pors-Nielsen S, Rizzoli R, Genant HK et al. The effects of strontium ranelate on the risk of vertebral fracture in women with postmenopausal osteoporosis. N Eng J Med. 350: 459-468, 2004. Go to original source... Go to PubMed...
  30. Oudadesse H, Dietrich E, Bui XV, Le Gal Y, Pellen P, Cathelineau G. Enhancement of cells proliferation and control of bioactivity of strontium doped glass. Appl Surf Sci. 257: 8587-8593, 2011. Go to original source...
  31. Ovesen J, Møller-Madsen B, Nielsen PT, Christensen PH, Simonsen O, Hoeck HC, Laursen MB, Thomsen JS. Differences in zinc status between patients with osteoarthritis and osteoporosis. J Trace Elem Med Biol. 23: 1-8, 2009. Go to original source... Go to PubMed...
  32. Pagila D E, Valentine WN. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med. 70: 158-169, 1967.
  33. Peng S, Zhou G, Luk KD, Cheung KM, Li Z, Lam WM, Zhou ZJ, Lu WW. Strontium promotes osteogenic differentiation of mesenchymal stem cells through the Ras/MAPK signaling pathway. Cell Physiol Biochem. 23: 165-174, 2009. Go to original source... Go to PubMed...
  34. Sadeghi N, Oveisi MR, Jannat B, Hajimahmoodi M, Jamshidi AR, Sajadian Z. Determination of plasma gluthatione reductase enzyme activity in osteoporotic women. Daru. 16: 51-54, 2008.
  35. Saito T, Kin Y, Koshino T. Osteogenic response of hydroxyapatite cement implanted into the femur of rats with experimentally induced osteoporosis. Biomaterials. 23: 2711-2716, 2002. Go to original source... Go to PubMed...
  36. Sánchez-Rodríguez MA, Ruiz-Ramos M, Correa-Muñoz E, Mendoza-NúñezVM. Oxidative stress as a risk factor for osteoporosis in elderly Mexicans as characterized by antioxidant enzymes. BMC Musculoskelet Dis. 8: 124, 2007. Go to original source... Go to PubMed...
  37. Sinet PM, Garber P. Inactivation of human Cu, Zn superoxide dismutase during exposue to O2 and H2O2. Arch Biochem Biophys. 212: 411-416, 1981. Go to original source... Go to PubMed...
  38. Tsigkou O, Jones JR, Polak JM, Stevens MM. Differentiation of fetal osteoblasts and formation of mineralized bone nodules by 45S5 Bioglass conditioned medium in the absence of osteogenic supplements. Biomaterials. 30: 3542-3550, 2009. Go to original source... Go to PubMed...
  39. Voigt W. Sulforhodamine B assay and chemosensitivity. Methods Mol Med. 110: 39-48. 2005. Go to original source... Go to PubMed...
  40. Xue W, Moore JL, Hosick HL, Bose S, Bandyopadhyay A, Lu WW. Osteoprecursor cell response to strontium-containing hydroxyapatite ceramics. J Biomed Mater Res A. 79: 804-814, 2006. Go to original source... Go to PubMed...
  41. Zhu LL, Zaidi S, Peng Y, Zhou H, Moonga BS, Blesius A, Dupin-Roger I, Zaidi M, Sun L. Induction of a program gene expression during osteoblast differentiation with strontium ranelate. Biochem Biophys Res Commun. 355: 307-311, 2007. Go to original source... Go to PubMed...
  42. Zreiqat H, Ramaswamy Y, Wu C, Paschalidis A, Lu Z, James B, Birkeb O, McDonald M, Little D, Dunstan CR. The incorporation of strontium and zinc into a calcium-silicon ceramic for bone tissue engineering. Biomaterials. 31: 3175-3184, 2010. Go to original source... Go to PubMed...