J Appl Biomed 14:71-83, 2016 | DOI: 10.1016/j.jab.2015.10.001

Enhanced hypoxic tolerance by Seabuckthorn is due to upregulation of HIF-1α and attenuation of ER stress

Kanika Jain, Geetha Suryakumar*, Rajendra Prasad, Lilly Ganju, Shashi Bala Singh
Cellular Biochemistry Division, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi 110 054, India

An imbalance in the redox homeostasis causes activation of multifaceted signaling responses which may be protective or deleterious. Amelioration of oxidative stress is one of the major modes of action of herbal supplements like Seabuckthorn (SBT). While the antioxidant potential of SBT is known, investigations into its effect on stress inducible signaling cascades are in progress. Here, we examine the impact of SBT on hypoxic tolerance and the mechanism behind its cardioprotective action. The efficacy of SBT was evaluated using the onset of gasping time (GT) at an altitude of 9754 m as the indicator for hypoxic tolerance. SBT led to a 100% increase in GT and curtailed hypoxia induced cardiac damage and free radical production. SBT upregulated HIF-1α and led to a two-fold increase in HO-1. A 100% increase in NO levels was observed. SBT reduced protein carbonylation and enhanced HSP70 levels. A statistically significant decline was seen in the markers of ER stress, GRP78, PERK and CHOP. SBT potentiated anti-inflammatory effects and downregulated NF-κB and TNF-α. Our study provides a novel insight into the mechanism behind the pro-survival effects of SBT against hypoxia, highlighting the cross talk between key adaptive responses mediated by HIF-1α and ER stress.

Keywords: Oxidative stress; Hypoxia; HIF-1α; Nitric oxide; Caspase

Received: May 20, 2015; Revised: October 2, 2015; Accepted: October 5, 2015; Published: February 1, 2016  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Jain K, Suryakumar G, Prasad R, Ganju L, Bala Singh S. Enhanced hypoxic tolerance by Seabuckthorn is due to upregulation of HIF-1α and attenuation of ER stress. J Appl Biomed. 2016;14(1):71-83. doi: 10.1016/j.jab.2015.10.001.
Download citation

References

  1. Aebi, H., 1984. Catalase. In: Bergmeyer, H.U. (Ed.), Methods of Enzymatic Analysis. Academic Press, New York, pp. 673-684. Go to original source...
  2. Asea, A., Kaur, P., Panossian, P., Wikman, K.G., 2013. Evaluation of molecular chaperons Hsp72 and neuropeptide Y as characteristic markers of adaptogenic activity of plant extracts. Phytomedicine 20, 1323-1329. Go to original source... Go to PubMed...
  3. Beveridge, T., Li, T.S.C., Oomah, B.D., Smith, A., 1999. Sea buckthorn products: manufacture and composition. J. Agric. Food Chem. 47, 3480-3488. Go to original source... Go to PubMed...
  4. Bradford, M.M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254. Go to original source... Go to PubMed...
  5. Cai, X.H., Li, X.C., Jin, S.W., Liang, D.S., Wen, Z.W., Cao, H.C., Mei, H.F., Wu, Y., Lin, Z.D., Wang, L.X., 2014. Endoplasmic reticulum stress plays critical role in brain damage after chronic intermittent hypoxia in growing rats. Exp. Neurol. 257, 148-156. Go to original source... Go to PubMed...
  6. Chen, Y.W., Chou, H.C., Lin, S.T., Chen, Y.H., Chang, Y.J., Chen, L., Chan, H.L., 2013. Cardioprotective effects of quercetin in cardiomyocyte under ischemia/reperfusion injury. Evid. Based Complement. Alternat. Med. 364519. Go to original source...
  7. Chi, N.C., Karliner, J.S., 2004. Molecular determinants of responses to myocardial ischemia/reperfusion injury: focus on hypoxia-inducible and heat shock factors. Cardiovasc. Res. 61, 437-447. Go to original source... Go to PubMed...
  8. Ding, H., Liu, Q., Hua, M., Ding, M., Du, H., Zhang, W., Li, Z., Zhang, J., 2011. Polymorphisms of hypoxia-related genes in subjects susceptible to acute mountain sickness. Respiration 81, 236-241. Go to original source... Go to PubMed...
  9. Dosek, A., Ohno, H., Acs, Z., Taylor, A.W., Radak, Z., 2007. High altitude and oxidative stress. Respir. Physiol. Neurobiol. 158, 128-131. Go to original source... Go to PubMed...
  10. Dousset, J.C., Trouillh, M., Fogliettis, M.J., 1983. Plasma malondialdehyde levels during myocardial infarction. Clin. Chim. Acta 29, 319-322. Go to original source... Go to PubMed...
  11. Dousset, N., Ferretti, G., Taus, M., Valdiguie, P., Curatola, G., 1994. Fluorescence analysis of lipoprotein peroxidation. Methods Enzymol. 233, 459-469. Go to original source... Go to PubMed...
  12. Ganju, L., Padwad, Y., Singh, R., Karan, D., Chanda, S., Chopra, M. K., Bhatnagar, P., Kashyap, R., Sawhney, R.C., 2005. Antiinflammatory activity of Seabuckthorn (Hippophae rhamnoides) leaves. Int. Immunopharmacol. 5, 1675-1684. Go to original source... Go to PubMed...
  13. Geetha, S., Sai Ram, M., Singh, V., Ilavazhagan, G., Sawhney, R. C., 2003. Evaluation of antioxidant activity of leaf extract of Sea buckthorn (Hippophae rhamnoides L.) on chromium (VI) induced oxidative stress in male albino rats. J. Ethnopharmacol. 87, 247-251. Go to original source... Go to PubMed...
  14. Giulivi, C., Davies, K.J.A., 1994. Dityrosine: a marker for oxidatively modified proteins and selective proteolysis. Methods Enzymol. 233, 363-371. Go to original source... Go to PubMed...
  15. Gonzalez-Barrios, J.A., Escalante, B., Valdes, J., Bertha, A., Chavez, L., Fong, D.M., 2002. Nitric oxide and nitric oxide synthases in the fetal cerebral cortex of rats following transient uteroplacental ischemia. Brain Res. 945, 114-122. Go to original source... Go to PubMed...
  16. Jain, M., Ganju, L., Katiyal, A., Padwad, Y., Mishra, K.P., Chanda, S., Karan, D., Yogendra, K.M., Sawhney, R.C., 2008. Effect of Hippophae rhamnoides leaf extract against Dengue virus infection in human blood-derived macrophages. Phytomedicine 15, 793-799. Go to original source... Go to PubMed...
  17. Jain, K., Suryakumar, G., Prasad, R., Ganju, L., 2013a. Differential activation of myocardial ER stress response: a possible role in hypoxic tolerance. Int. J. Cardiol. 168, 4667-4677. Go to original source... Go to PubMed...
  18. Jain, K., Suryakumar, G., Prasad, R., Ganju, L., 2013b. Upregulation of cytoprotective defence mechanisms and hypoxia responsive proteins imparts tolerance to acute hypobaric hypoxia. High Alt. Med. Biol. 14, 65-77. Go to original source... Go to PubMed...
  19. Jain, K., Suryakumar, G., Ganju, L., Singh, S.B., 2014. Differential hypoxic tolerance is mediated by activation of heat shock response and nitric oxide pathway. Cell Stress Chaperon. 19, 801-812. Go to original source... Go to PubMed...
  20. Jayashankar, B., Mishra, K.P., Kumar, M.S., Udayasankar, K., Misra, K., Ganju, L., Singh, S.B., 2012. A supercritical CO2 extract from Seabuckthorn leaves inhibits pro-inflammatory mediators via inhibition of mitogen activated protein kinase p38 and transcription factor nuclear factor-kB. Int. Immunopharmacol. 13, 461-467. Go to original source... Go to PubMed...
  21. Jayashankar, B., Mishra, K.P., Ganju, L., Singh, S.B., 2014. Supercritical extract of Seabuckthorn leaves (SCE200ET) inhibited endotoxemia by reducing inflammatory cytokines and nitric oxide synthase 2 expression. Int. Immunopharmacol. 20, 89-94. Go to original source... Go to PubMed...
  22. Khan, A., Manna, K., Chinchubose, Das, D.K., Sinha, M., Kesh, S. B., Das, U., Dey, R.S., Banerji, A., Dey, S., 2014. Seabuckthron (Hippophae rhamnoides L.) leaf extract ameliorates the gamma radiation mediated DNA damage and hepatic alterations. Indian J. Exp. Biol. 52, 952-964.
  23. Koyama, M., Furuhashi, M., Ishimura, S., Mita, T., Fuseya, T., Okazaki, Y., Yoshida, H., Tsuchihashi, K., Miura, T., 2014. Reduction of endoplasmic reticulum stress by 4phenylbutyric acid prevents the development of hypoxiainduced pulmonary arterial hypertension. Am. J. Physiol. Heart. Circ. Physiol. 306, H1314-H1323. Go to original source... Go to PubMed...
  24. LeBel, C.P., Ischiropoulos, H., Bondy, S.C., 1992. Evaluation of the probe 20, 70 -dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chem. Res. Toxicol. 5, 227-231. Go to original source... Go to PubMed...
  25. Levine, R.L., Garland, D., Oliver, C.N., Amici, A., Climent, I., Lenz, A., Ahn, B., Shaltiel, S., Stadtman, E.R., 1990. Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol. 186, 464-478. Go to original source... Go to PubMed...
  26. Li, M., Jiang, Y., Jing, W., Sun, B., Miao, C., Ren, L., 2013. Quercetin provides greater cardioprotective effect than its glycoside derivative rutin on isoproterenol-inducedcardiac fibrosis in the rat. Can. J. Physiol. Pharmacol. 91, 951-959. Go to original source... Go to PubMed...
  27. Li, S.Y., Gomelsky, M., Duan, J., Zhang, Z., Gomelsky, L., Zhang, X., Epstein, P.N., Ren, J.J., 2004. Overexpression of aldehyde dehydrogenase-2 (ALDH2) transgene prevents acetaldehydeinduced cell injury in human umbilical vein endothelial cells: role of ERK and p38 mitogen-activated protein kinase. J. Biol. Chem. 279, 11244-11252. Go to original source... Go to PubMed...
  28. López-Hernández, B., Ceña, V., Posadas, I., 2015. The endoplasmic reticulum stress and the HIF-1 signalling pathways are involved in the neuronal damage caused by chemical hypoxia. Br. J. Pharmacol. 172, 2838-2851. Go to original source... Go to PubMed...
  29. Lukyanova, L.D., Sukoyan, G.V., Kirova, Y.I., 2013. Role of proinflammatory factors, nitric oxide, and some parameters of lipid metabolism in the development of immediate adaptation to hypoxia and HIF-1a accumulation. Bull. Exp. Biol. Med. 154, 597-601. Go to original source... Go to PubMed...
  30. Manickam, M., Tulsawani, R., 2014. Survival response of hippocampal neurons under low oxygen conditions induced by Hippophae rhamnoides is associated with JAK/STAT signaling. PLOS ONE 9, e87694. Go to original source... Go to PubMed...
  31. Niforou, K., Cheimonidou, C., Trougakos, I.P., 2014. Molecular chaperones and proteostasis regulation during redox imbalance. Redox Biol. 2, 323-332. Go to original source... Go to PubMed...
  32. Padwad, Y., Ganju, L., Jain, M., Chanda, S., Karan, D., Kumar, R., Banerjee, P.K., Sawhney, R.C., 2006. Effect of leaf extract of Sea buckthorn on lipopolysaccharide induced inflammatory response in murine macrophages. Int. Immunopharmacol. 6, 46-52. Go to original source... Go to PubMed...
  33. Panossian, A., Wikman, G., Kaur, P., Asea, A., 2009. Adaptogens exert a stress protective effect by modulation of expression of molecular chaperons. Phytomedicine 16, 617-622. Go to original source... Go to PubMed...
  34. Pichiah, P.B., Moon, H.J., Park, J.E., Moon, Y.J., Cha, Y.S., 2012. Ethanolic extract of Seabuckthorn (Hippophae rhamnoides L.) prevents high-fat diet-induced obesity in mice through down-regulation of adipogenic and lipogenic gene expression. Nutr. Rev. 32, 856-864. Go to original source... Go to PubMed...
  35. Purushothaman, J., Suryakumar, G., Shukla, D., Malhotra, A.S., Harinath, K., Kumar, R., Sawhney, R.C., 2008. Modulatory effects of Sea buckthorn (Hippophae rhamnoides L.) in hypobaric hypoxia induced cerebral vascular injury. Brain Res. Bull. 77, 246-252. Go to original source... Go to PubMed...
  36. Purushothaman, J., Suryakumar, G., Shukla, D., Jayamurthy, H., Kasiganesan, H., Kumar, R., Sawhney, R.C., 2011. Modulation of hypoxia-induced pulmonary vascular leakage in rats by Seabuckthorn (Hippophae rhamnoides L.). Evid. Based Complement. Alternat. Med. 574524. Go to original source...
  37. Saggu, S., Divekar, H.M., Gupta, V., Sawhney, R.C., Banerjee, P.K., Kumar, R., 2007. Adaptogenic and safety evaluation of Seabuckthorn (Hippophae rhamnoides) leaf extract: a dose dependent study. Food Chem. Toxicol. 45, 609-617. Go to original source... Go to PubMed...
  38. Saggu, S., Kumar, R., 2008. Effect of Seabuckthorn leaf extracts on circulating energy fuels, lipid peroxidation and antioxidant parameters in rats during exposure to cold, hypoxia and restraint (C-H-R) stress and post stress recovery in rats. Phytomedicine 15, 437-446. Go to original source... Go to PubMed...
  39. Sedlak, J., Lindsay, R.H., 1968. Estimation of total, protein-bound and non-protein sulfhydryl groups in tissue with Ellman's reagent. Anal. Biochem. 25, 192-205. Go to original source... Go to PubMed...
  40. Semenza, G.L., 2009. Regulation of oxygen homeostasis by hypoxia-inducible factor 1. Physiology (Bethesda) 24, 97-106. Go to original source... Go to PubMed...
  41. Sugden, P.H., Clerk, A., 2006. Oxidative stress and growthregulating intracellular signaling pathways in cardiac myocytes. Antioxid. Redox Signal. 8, 2111-2124. Go to original source... Go to PubMed...
  42. Suryakumar, G., Gupta, A., 2011. Medicinal and therapeutic potential of Sea buckthorn (Hippophae rhamnoides L.). J. Ethnopharmacol. 138, 268-278. Go to original source... Go to PubMed...
  43. Suzuki, K., Kizaki, T., Hitomi, Y., Nukita, M., Kimoto, K., Miyazawa, N., Kobayashi, K., Ohnuki, Y., Ohno, H., 2003. Genetic variation in hypoxia-inducible factor 1alpha and its possible association with high altitude adaptation in Sherpas. Med. Hypotheses 61, 385-389. Go to original source... Go to PubMed...
  44. Tulsawani, R., Gupta, R., Misra, K., 2013. Efficacy of aqueous extract of Hippophae rhamnoides and its bio-active flavonoids against hypoxia-induced cell death. Indian J. Pharmacol. 45, 258-263. Go to original source... Go to PubMed...
  45. Upadhyay, N.K., Kumar, M.S.Y., Gupta, A., 2010. Antioxidant, cytoprotective and antibacterial effects of Sea buckthorn (Hippophae rhamnoides L.) leaves. Food Chem. Toxicol. 48, 3443-3448. Go to original source... Go to PubMed...
  46. Valko, M., Leibfritz, D., Moncol, J., Cronin, M.T., Mazur, M., Telser, J., 2007. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 39, 44-84. Go to original source... Go to PubMed...
  47. Witko-Sarsat, V., Friedlander, M., Capeillere-Blandin, C., Nguyen-Khoa, T., Nguyen, A.T., Zingraff, J., Jungers, P., Descamps-Latscha, B., 1996. Advanced oxidation protein products as a novel marker of oxidative stress in uremia. Kidney Int. 49, 1304-1313. Go to original source... Go to PubMed...
  48. Xing, G., Qualls, C., Huicho, L., River-Ch, M., Stobdan, T., et al., 2008. Adaptation and maladaptation to ambient hypoxia: Andean ethiopian and Himalayan patterns. PLoS ONE 3, e2342. Go to original source... Go to PubMed...
  49. Zhang, K., Kaufman, R.J., 2006. The unfolded protein response: a stress signaling pathway critical for health and disease. Neurology 66, S102-S109. Go to original source... Go to PubMed...