J Appl Biomed 14:199-209, 2016 | DOI: 10.1016/j.jab.2016.01.003

Phenazine-1-carboxylic acid-induced programmed cell death in human prostate cancer cells is mediated by reactive oxygen species generation and mitochondrial-related apoptotic pathway

Valliappan Karuppiaha,b,*, Kumarappan Alagappanc, Kannan Sivakumarb, Lakshmanan Kannanb
a Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal Pietermaritzburg, Private Bag X 01, Scottsville 3209, South Africa
b CAS in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai 608502, Tamil Nadu, India
c Accuvis Bio, Abu Dhabi University Campus, Khalifa City B, Abu Dhabi, United Arab Emirates

Phenazine-1-carboxylic acid has extensive pharmacological activity, including antibiotic and immunomodulatory, but the anticancer activity remains unknown. Treatment of prostate cancer cell line (DU145) with phenazine-1-carboxylic acid stimulated inhibition of cell proliferation in concentration- and time-dependent manner. Dual staining confirmed phenazine-1-carboxylic acid stimulated prostate cancer programmed cell death in time-dependent manner. To investigate the exact mechanism, phenazine-1-carboxylic acid-stimulated oxidative stress and mitochondrial-related apoptotic pathway in human prostate cancer cells were examined in this study. Phenazine-1-carboxylic acid increased the generation of reactive oxygen species (ROS) in prostate cancer cell lines, which triggered the pro-apoptotic JNK signaling. Phosphorylated JNK stimulated the depolarization of mitochondrial membrane potential (ΔΨm) and downregulation of anti-apoptotic protein Bcl-2 related with the upregulation of pro-apoptotic protein Bax. Downregulation of anti-apoptotic Bcl-2 family protein in corresponding with loss of ΔΨm, stimulate the increased production of cytochrome c and programmed cell death inducing factor (AIF) from mitochondria, and ultimately induced the caspase-dependent and caspase-independent programmed cell death. Altogether, the present study suggests that phenazine-1-carboxylic acid showed an antitumor activity in prostate cancer cells by reactive oxygen species production and mitochondrial-related apoptotic pathway. The results of the present study offered an insight into the prospective of phenazine-1-carboxylic acid for prostate cancer therapy.

Keywords: Phenazine-1-carboxylic acid; Streptomyces; Prostate cancer; Programmed cell death; Reactive oxygen species; Mitochondria

Received: October 10, 2015; Revised: January 11, 2016; Accepted: January 11, 2016; Published: August 1, 2016  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Karuppiah V, Alagappan K, Sivakumar K, Kannan L. Phenazine-1-carboxylic acid-induced programmed cell death in human prostate cancer cells is mediated by reactive oxygen species generation and mitochondrial-related apoptotic pathway. J Appl Biomed. 2016;14(3):199-209. doi: 10.1016/j.jab.2016.01.003.
Download citation

References

  1. Abdelfattah, M.S., Kazufumi, T., Ishibashi, M., 2011. Isolation and structure elucidation of izuminosides AeC: a rare phenazine glycosides from Streptomyces sp. IFM 11260. J. Antibiot. 64, 271-275. Go to original source... Go to PubMed...
  2. Abken, H.J., Tietze, M., Brodersen, J., Baumer, S., Beifuss, U., Deppenmeier, U., 1998. Isolation and characterization of methanophenazine and function of phenazines in membrane-bound electron transport of Methanosarcina mazei Go1. J. Bacteriol. 180, 2027-2032. Go to original source... Go to PubMed...
  3. Ajenjo, N., Canon, E., Sanchez-Perez, I., Matallanas, D., Leon, J., Perona, R., Crespo, P., 2004. Subcellular localization determines the protective effects of activated ERK2 against distinct apoptogenic stimuli in myeloid leukemia cells. J. Biol. Chem. 279, 32813-32823. Go to original source... Go to PubMed...
  4. Arnoult, D., Gaume, B., Karbowski, M., Sharpe, J.C., Cecconi, F., Youle, R.J., 2003. Mitochondrial release of AIF and EndoG requires caspase activation downstream of Bax/Bakmediated permeabilization. EMBO J. 22, 4385-4399. Go to original source... Go to PubMed...
  5. Buckingham, J., 2008. Dictionary of Natural Products on CD-ROM 16.2. Chapman and Hall, London.
  6. Chandra, J., Samali, A., Orrenius, S., 2000. Triggering and modulation of apoptosis by oxidative stress. Free Radic. Biol. Med. 29, 323-333. Go to original source... Go to PubMed...
  7. Chang, H.L., Hsu, H.K., Su, J.H., Wang, P.H., Chun, Y.F., Chia, Y.C., Tsai, L.Y., Wu, Y.C., Yuan, S.S., 2006. The fractionated Toona sinensis leaf extract induces apoptosis of human ovarian cancer cells and inhibits tumor growth in a murine xenograft model. Gynecol. Oncol. 102, 309-314. Go to original source...
  8. Cimmino, A., Andolfi, A., Evidente, A., 2013. Microbion phenazines. In: Chincholkar, T. (Ed.), Phenazine as an Anticancer Agent. Springer, Heidelberg, pp. 217-243. Go to original source...
  9. Cimmino, A., Evidente, A., Mathieu, V., Andolfi, A., Lefranc, F., Kornienko, A., Kiss, R., 2012. Phenazines and cancer. Nat. Prod. Rep. 29, 487-501. Go to original source... Go to PubMed...
  10. Cregan, S.P., Dawson, V.L., Slack, R.S., 2004. Role of AIF in caspase-dependent and caspase-independent cell death. Oncogene 23, 2785-2796. Go to original source... Go to PubMed...
  11. Denning, G.M., Iyer, S.S., Reszka, K.J., O'Malley, Y., Rasmussen, G.T., Britigan, B.E., 2003. Phenazine-1-carboxylic acid, a secondary metabolite of Pseudomonas aeruginosa, alters expression of immunomodulatory proteins by human airway epithelial cells. Am. J. Physiol. Lung Cell Mol. Physiol. 285, L584-L592. Go to original source... Go to PubMed...
  12. Elmore, S., 2007. Apoptosis: a review of programmed cell death. Toxicol. Pathol. 35, 495-516. Go to original source... Go to PubMed...
  13. Gao, X., Lu, Y., Fang, L., Fang, X., Xing, Y., Gou, S., Xi, T., 2013. Synthesis and anticancer activity of some novel 2phenazinamine derivatives. Eur. J. Med. Chem. 69, 1-9. Go to original source... Go to PubMed...
  14. Gao, X., Lu, Y., Xing, Y., Ma, Y., Lu, J., Bao, W., Wang, Y., Xi, T., 2012. A novel anticancer and antifungus phenazine derivative from a marine actinomycete BM-17. Microbiol. Res. 167, 616-622. Go to original source... Go to PubMed...
  15. Giddens, S.R., Feng, Y., Mahanty, H.K., 2002. Characterization of a novel phenazine antibiotic gene cluster in Erwinia herbicola Eh1087. Mol. Microbiol. 45, 769-783. Go to original source... Go to PubMed...
  16. Gupta, S., 2007. Prostate cancer chemoprevention: current status and future prospects. Toxicol. Appl. Pharmacol. 224, 369-376. Go to original source... Go to PubMed...
  17. Hussain, H., Specht, S., Sarite, S.R., Saeftel, M., Hoerauf, A., Schulz, B., Krohn, K., 2011. A new class of phenazines with activity against a chloroquine resistant Plasmodium falciparum strain and antimicrobial activity. J. Med. Chem. 54, 4913-4917. Go to original source... Go to PubMed...
  18. Jemal, A., Murray, T., Ward, E., Samuels, A., Tiwari, R.C., Ghafoor, A., Feuer, E.J., Thun, M.J., 2005. Cancer statistics 2005 Canada. Cancer J. Clin. 55, 10-30. Go to original source... Go to PubMed...
  19. Karuppiah, V., Aarthi, C., Sivakumar, K., 2011. Enhancement of PCR amplification of actinobacterial 16S rRNA gene using an adjuvant, dimethyl sulphoxide. Curr. Sci. 101, 22-23.
  20. Karuppiah, V., Aarthi, C., Sivakumar, K., Kannan, L., 2013. Statistical optimization and anticancer activity of a red pigment isolated from Streptomyces sp. PM4. Asian Pac. J. Trop. Biomed. 3, 650-656. Go to original source... Go to PubMed...
  21. Karuppiah, V., Li, Y., Sun, W., Feng, G., Li, Z., 2015. Functional gene-based discovery of phenazines from the actinobacteria associated with marine sponges in the South China Sea. Appl. Microbiol. Biotechnol. 99, 5939-5950. Go to original source... Go to PubMed...
  22. Kerr, J.R., Taylor, G.W., Rutman, A., Hoiby, N., Cole, P.J., Wilson, R., 1999. Pseudomonas aeruginosa pyocyanin and 1hydroxyphenazine inhibit fungal growth. J. Clin. Pathol. 52, 385-387. Go to original source... Go to PubMed...
  23. Krishnan, K., Campbell, S., Abdel-Rahman, F., Whaley, S., Stone, W.L., 2003. Cancer chemoprevention drug targets. Curr. Drug Targets 4, 1389-4501. Go to original source... Go to PubMed...
  24. Kuo, P.L., Chen, C.Y., Hsu, Y.L., 2007. Isoobtusilactone A induces cell cycle arrest and apoptosis through reactive oxygen species/apoptosis signal-regulating kinase 1 signaling pathway in human breast cancer cells. Cancer Res. 67, 7406-7420. Go to original source... Go to PubMed...
  25. Laatsch, H., 2007. Antibase 2007 SciDex: The Natural Products Identifier, first ed. Wiley-VCH, Weinheim, Germany.
  26. Liou, G.Y., Storz, P., 2010. Reactive oxygen species in cancer. Free Radic. Res. 44, 479-496. Go to original source... Go to PubMed...
  27. Mavrodi, D.V., Blankenfeldt, W., Thomashow, L.S., 2006. Phenazine compounds in fluorescent Pseudomonas spp. biosynthesis and regulation. Annu. Rev. Phytopathol. 44, 417-445. Go to original source... Go to PubMed...
  28. McIlwain, D.R., Berger, T., Mak, T.W., 2013. Caspase functions in cell death and disease. Cold Spring Harb. Perspect. Biol. 5, a008656. Go to original source... Go to PubMed...
  29. Nakano, H., Nakajima, A., Sakon-Komazawa, S., Piao, J.H., Xue, X., Okumura, K., 2006. Reactive oxygen species mediate crosstalk between NF-kappaB and JNK. Cell Death Differ. 13, 730-737. Go to original source... Go to PubMed...
  30. Neves-Pinto, C., Malta, V.R.S., Pinto, M.D.C.F.R., Santos, R.H.A., de Castro, S.L., Pinto, A.V., 2002. A trypanocidal phenazine derived from b-lapachone. J. Med. Chem. 45, 2112-2115. Go to original source... Go to PubMed...
  31. Nogueira, V., Hay, N., 2013. Molecular pathways: reactive oxygen species homeostasis in cancer cells and implications for cancer therapy. Clin. Cancer Res. 19, 4309-4314. Go to original source... Go to PubMed...
  32. Pierson, L.S., Pierson, E.A., 2010. Metabolism and function of phenazines in bacteria: impacts on the behaviour of bacteria in the environment and biotechnological processes. Appl. Microbiol. Biotechnol. 86, 1659-1670. Go to original source... Go to PubMed...
  33. Pu, Y.S., Chiang, H.S., Lin, C.C., Huang, C.Y., Huang, K.H., Chen, J., 2004. Changing trends of prostate cancer in Asia. Aging Male 7, 120-132. Go to original source... Go to PubMed...
  34. Rane, M.R., Sarode, P.D., Chaudhari, B.L., Chincholkar, S.B., 2007. Detection, isolation and identification of phenazine-1carboxylic acid produced by biocontrol strains of Pseudomonas aeruginosa. J. Sci. Ind. Res. 66, 627-631.
  35. Rewcastle, G.W., Denny, W.A., Baguley, B.C., 1987. Potential antitumor agents. 51. Synthesis and antitumor activity of substituted phenazine-1-carboxamides. J. Med. Chem. 30, 843-851. Go to original source... Go to PubMed...
  36. Singh, R.P., Dhanalakshmi, S., Agarwal, R., 2002. Phytochemicals as cell cycle modulators: a less toxic approach in halting human cancers. Cell Cycle 1, 56-161. Go to original source...
  37. Son, Y., Cheong, Y.K., Kim, N.H., Chung, H.T., Kang, D.G., Pae, H. O., 2011. Mitogen-activated protein kinases and reactive oxygen species: how can ros activate mapk pathways? J. Signal. Transduct. 2011, 792639. Go to original source... Go to PubMed...
  38. Sorensen, R.U., Klinger, J.D., Cash, H.A., Chase, P.A., Dearborn, D. G., 1983. In vitro inhibition of lymphocyte proliferation by Pseudomonas aeruginosa phenazine pigments. Infect. Immun. 41, 321-330. Go to original source... Go to PubMed...
  39. Sun, W., Dai, S.K., Jiang, S.M., Wang, G.H., Liu, G.H., Wu, H.B., Li, X., 2010. Culture-dependent and culture-independent diversity of Actinobacteria associated with the marine sponge Hymeniacidon perleve from the South China Sea. Antonie Van Leeuwenhoek 98, 65-75. Go to original source... Go to PubMed...
  40. Trachootham, D., Lu, W., Ogasawara, M.A., Valle, N.R.D., Huang, P., 2008. Redox regulation of cell survival. Antioxid. Redox Signal. 10, 1343-1374. Go to original source... Go to PubMed...
  41. Wang, W., Preville, P., Morin, N., Mounir, S., Cai, W., Siddiqui, M. A., 2000. Hepatitis C viral IRES inhibition by phenazine and phenazine-like molecules. Bioorg. Med. Chem. Lett. 10, 1151-1154. Go to original source... Go to PubMed...