J Appl Biomed 15:196-203, 2017 | DOI: 10.1016/j.jab.2017.02.001

Alpha 2,3- and alpha 2,6-sialylation of human skim milk glycoproteins during milk maturation

Jolanta Lis-Kuberkaa, Marta Berghausen-Mazurb, Magdalena Orczyk-Pawi³owicza,*
a Department of Chemistry and Immunochemistry, Wroclaw Medical University, Wroc³aw, Poland
b Independent Public Clinical Hospital No 1, Wroc³aw, Poland

Human milk is a source of glycoconjugates, sialylated forms of which enrich the newborn immature immune system and are crucial for their proper development and well-being. Here, we analyzed the expression of α2,3-/α2,6-sialylated glycotopes on skim milk glycoproteins over lactation. Milk samples were analyzed by lectin-blotting using α2,3- and α2,6- sialic acid specific Maackia amurensis (MAA) and Sambucus nigra (SNA) lectins and sialyl- and asialyl-T antigen specific Artocarpus integrifolia (Jacalin) and Arachis hypogaea (PNA) lectins. The reactivities of MAA, SNA, Jacalin and PNA with milk glycoproteins showed that they are heavily decorated with α2,3-/α2,6-linked sialic acid and sialyl-T antigen and to a lesser degree with asialyl-T antigen. Despite individual differences of particular glycoproteins, a sharp and significant decline of α2,6-sialylated glycotopes and sialyl-T antigens and a weaker but significant decrease of α2,3-sialylated glycotopes and asialyl-T antigens on milk glycoproteins during milk maturation was observed. The expression of α2,3-/α2,6-sialylated glycotopes, sialyl- and asialyl-T antigens corresponds to milk maturation but differs in relation to the analyzed glycoprotein. Sialylated milk glycoproteins are considered as a part of innate immunity provided to neonates. Further investigations are needed to understand if they may be useful in milk banking to control the biochemical quality of milk.

Keywords: Human milk glycoproteins; Alpha 2,3- and alpha 2,6-sialylated glycotopes; Lactation; Lectins; Sialic acid; T antigen

Received: August 19, 2016; Revised: January 31, 2017; Published: July 1, 2017  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Lis-Kuberka J, Berghausen-Mazur M, Orczyk-Pawi³owicz M. Alpha 2,3- and alpha 2,6-sialylation of human skim milk glycoproteins during milk maturation. J Appl Biomed. 2017;15(3):196-203. doi: 10.1016/j.jab.2017.02.001.
Download citation

References

  1. Barboza, M., Pinzon, J., Wickramasinghe, S., Froehlich, J.W., Moeller, I., Smilowitz, J. T., Ruhaak, L.R., Huang, J., Lönnerdal, B., German, J.B., Medrano, J.F., Weimer, B.C., Lebrilla, C.B., 2012. Glycosylation of human milk lactoferrin exhibits dynamic changes during early lactation enhancing its role in pathogenic bacteria-host interactions. Mol. Cell. Proteomics 11, M111. Go to original source... Go to PubMed...
  2. Bernardi, A., Jiménez-Barbero, J., Casnati, A., De Castro, C., Darbre, T., Fieschi, F., Finne, J., Funken, H., Jaeger, K.E., Lahmann, M., Lindhorst, T.K., Marradi, M., Messner, P., Molinaro, A., Murphy, P.V., Nativi, C., Oscarson, S., Penadés, S., Peri, F., Pieters, R.J., Renaudet, O., Reymond, J.L., Richichi, B., Rojo, J., Sansone, F., Schäffer, C., Turnbull, W.B., Velasco-Torrijos, T., Vidal, S., Vincent, S., Wennekes, T., Zuilhof, H., Imberty, A., 2013. Multivalent glycoconjugates as anti-pathogenic agents. Chem. Soc. Rev. 42, 4709-4727. Go to original source... Go to PubMed...
  3. Bode, L., Kunz, C., Muhly-Reinholz, M., Mayer, K., Seeger, W., Rudloff, S., 2004. Inhibition of monocyte, lymphocyte, and neutrophil adhesion to endothelial cells by human milk oligosaccharides. Thromb. Haemost. 92, 1402-1410. Go to original source... Go to PubMed...
  4. Bode, L., 2012. Human milk oligosaccharides: every baby needs a sugar mama. Glycobiology 22, 1147-1162. Go to original source... Go to PubMed...
  5. Bourne, Y., Astoul, C.H., Zamboni, V., Peumans, W.J., Menu-Bouaouiche, L., Van Damme, E.J., Barre, A., Rougé, P., 2002. Structural basis for the unusual carbohydrate-binding specificity of jacalin towards galactose and mannose. Biochem. J. 364, 173-180. Go to original source... Go to PubMed...
  6. Broadhurst, M., Beddis, K., Black, J., Henderson, H., Nair, A., Wheeler, T., 2015. Effect of gestation length on the levels of five innate defence proteins in human milk. Early Hum. Dev. 91, 7-11. Go to original source... Go to PubMed...
  7. Coppa, G.V., Pierani, P., Zampini, L., Carloni, I., Carlucci, A., Gabrielli, O., 1999. Oligosaccharides in human milk during different phases of lactation. Acta Paediatr. 88, 89-94. Go to original source...
  8. França, E.L., Nicomedes, T.R., Calderon, I.M.P., Honório-França, A.C., 2010. Timedependent alterations of soluble and cellular components in human milk. Biol. Rhythm Res. 41, 333-347. Go to original source...
  9. Froehlich, J.W., Dodds, E.D., Barboza, M., McJimpsey, E.L., Seipert, R.R., Francis, J., An, H.J., Freeman, S., German, J.B., Lebrilla, C.B., 2010. Glycoprotein expression in human milk during lactation. J. Agric. Food Chem. 58, 6440-6448. Go to original source... Go to PubMed...
  10. Fujiwara, Y., Shimada, S., Takenaka, K., Kajiyama, K., Shirabe, K., Sugimachi, K., 2002. The sialyl LewisX expression in hepatocarcinogenesis: potential predictor for the emergence of hepatocellular carcinoma. Hepatogastroenterology 49, 213- 217. Go to PubMed...
  11. Hanisch, F.G., Peter-Katalinic, J., Egge, H., Dabrowski, U., Uhlenbruck, G., 1990. Structures of acidic O-linked polylactosaminoglycans on human skim milk mucins. Glycoconj. J. 7, 525-543. Go to original source... Go to PubMed...
  12. Hennigar, L.M., Hennigar, R.A., Schulte, B.A., 1987. Histochemical specificity of betagalactose binding lectins from Arachis hypogaea (peanut) and Ricinus communis (castor bean). Stain Technol. 62, 317-325. Go to original source... Go to PubMed...
  13. Jantscher-Krenn, E., Zherebtsov, M., Nissan, C., Goth, K., Guner, Y.S., Naidu, N., Choudhury, B., Grishin, A.V., Ford, H.R., Bode, L., 2012. The human milk oligosaccharide disialyllacto-N-tetraose prevents necrotising enterocolitis in neonatal rats. Gut 61, 1417-1425. Go to original source... Go to PubMed...
  14. Ka˛tnik, I., Jadach, J., Krotkiewski, H., Gerber, J., 1994. Investigating the glycosylation of normal and ovarian cancer haptoglobins using digoxigenin-labeled lectins. Glycosyl Dis. 1, 97-104. Go to original source...
  15. Ka˛tnik-Prastowska, I., 2003. Structure and biology of sialic acids. Adv. Clin. Exp. Med. 12, 653-663.
  16. Knibbs, R., Goldstein, I.J., Ratcliff, R.M., Shibuya, N., 1991. Characterization of the carbohydrate binding specificity of the leukoagglutinating lectin from Maackia amurensis. Comparison with other sialic acid-specific lectins. J. Biol. Chem. 266, 83-88. Go to original source...
  17. Laemmli, U.K., 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685. Go to original source... Go to PubMed...
  18. Landberg, E., Huang, Y., Strömqvist, M., Mechref, Y., Hansson, L., Lundblad, A., Novotny, M.V., Påhlsson, P., 2000. Changes in glycosylation of human bile-saltstimulated lipase during lactation. Arch. Biochem. Biophys. 377, 246-254. Go to original source... Go to PubMed...
  19. Lis-Kuberka, J., Ka ˛tnik-Prastowska, I., Berghausen-Mazur, M., Orczyk-Pawi³owicz, M., 2015. Lectin-based analysis of fucosylated glycoproteins of human skim milk during 47 days of lactation. Glycoconj. J. 32, 665-674. Go to original source... Go to PubMed...
  20. Liu, B., Newburg, D.S., 2013. Human milk glycoproteins protect infants against human pathogens. Breastfeed. Med. 8, 354-362. Go to original source... Go to PubMed...
  21. Liu, B., Yu, Z., Chen, C., Kling, D.E., Newburg, D.S., 2012. Human milk mucin 1 and mucin 4 inhibit Salmonella enterica serovar Typhimurium invasion of human intestinal epithelial cells in vitro. J. Nutr. 142, 1504-1509. Go to original source... Go to PubMed...
  22. Martín-Sosa, S., Martín, M.J., García-Pardo, L.A., Hueso, P., 2004. Distribution of sialic acids in the milk of Spanish mothers of full term infants during lactation. J. Pediatr. Gastroenterol. Nutr. 39, 499-503. Go to original source... Go to PubMed...
  23. Mistry, N., Inoue, H., Jamshidi, F., Storm, R.J., Oberste, M.S., Arnberg, N., 2011. Coxsackievirus A24 variant uses sialic acid-containing O-linked glycoconjugates as cellular receptors on human ocular cells. J. Virol. 85, 11283- 11290. Go to original source... Go to PubMed...
  24. Nwosu, C.C., Aldredge, D.L., Lee, H., Lerno, L.A., Zivkovic, A.M., German, J.B., Lebrilla, C.B., 2012. Comparison of the human and bovine milk N-glycome via highperformance microfluidic chip liquid chromatography and tandem mass spectrometry. J. Proteome Res. 11, 2912-2924. Go to original source... Go to PubMed...
  25. Orczyk-Pawi³owicz, M., Hirnle, L., Berghausen-Mazur, M., Ka ˛tnik-Prastowska, I.M., 2014. Lactation stage-related expression of sialylated and fucosylated glycotopes of human milk a-1-acid glycoprotein. Breastfeed. Med. 9, 313-319. Go to original source... Go to PubMed...
  26. Orczyk-Pawi³owicz, M., Berghausen-Mazur, M., Hirnle, L., Ka ˛tnik-Prastowska, I., 2015a. O-glycosylation of a-1-acid glycoprotein of human milk is lactation stage related. Breastfeed. Med. 10, 270-276. Go to original source... Go to PubMed...
  27. Orczyk-Pawi³owicz, M., Hirnle, L., Berghausen-Mazur, M., Ka ˛tnik-Prastowska, I., 2015b. Terminal glycotope expression on milk fibronectin differs from plasma fibronectin and changes over lactation. Clin. Biochem. 48, 167-173. Go to original source... Go to PubMed...
  28. Parry, S., Hanisch, F.G., Leir, S.H., Sutton-Smith, M., Morris, H.R., Dell, A., Harris, A., 2006. N-Glycosylation of the MUC1 mucin in epithelial cells and secretions. Glycobiology 16, 623-634. Go to original source... Go to PubMed...
  29. Royle, L., Roos, A., Harvey, D.J., Wormald, M.R., van Gijlswijk-Janssen, D., Redwan elR.M. Wilson, I.A., Daha, M.R., Dwek, R.A., Rudd, P.M., 2003. Secretory IgA N- and O-glycans provide a link between the innate and adaptive immune systems. J. Biol. Chem. 278, 20140-20153. Go to original source... Go to PubMed...
  30. Schauer, R., 2009. Sialic acids as regulators of molecular and cellular interactions. Curr. Opin. Struct. Biol. 19, 507-514. Go to original source... Go to PubMed...
  31. Schroten, H., Stapper, C., Plogmann, R., Köhler, H., Hacker, J., Hanisch, F.G., 1998. Fabindependent antiadhesion effects of secretory immunoglobulin A on Sfimbriated Escherichia coli are mediated by sialyloligosaccharides. Infect. Immun. 66, 3971-3973. Go to original source... Go to PubMed...
  32. Shade, K.T.C., Anthony, R.M., 2013. Antibody glycosylation and inflammation. Antibodies 2, 392-414. Go to original source...
  33. Shibuya, N., Goldstein, I.J., Broekaert, W.F., Nsimba-Lubaki, M., Peeters, B., Peumans, W.J., 1987. The elderberry (Sambucus nigra L.) bark lectin recognizes the Neu5Ac (a2, 6)Gal/GalNAc sequence. J. Biol. Chem. 262, 1596-1601. Go to original source...
  34. ten Bruggencate, S.J., Bovee-Oudenhoven, I.M., Feitsma, A.L., van Hoffen, E., Schoterman, M.H., 2014. Functional role and mechanisms of sialyllactose and other sialylated milk oligosaccharides. Nutr. Rev. 72, 377-389. Go to original source... Go to PubMed...
  35. Thurl, S., Munzert, M., Henker, J., Boehm, G., Müller-Werner, B., Jelinek, J., Stahl, B., 2010. Variation of human milk oligosaccharides in relation to milk groups and lactational periods. Br. J. Nutr. 104, 1261-1271. Go to original source... Go to PubMed...
  36. Towbin, H., Staehelin, T., Gordon, J., 1979. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. U. S. A. 76, 4350-4354. Go to original source... Go to PubMed...
  37. Vacca-Smith, A.M., Van Wuyckhuyse, B.C., Tabak, L.A., Bowen, W.H., 1994. The effect of milk and casein proteins on the adherence of Streptococcus mutans to salivacoated hydroxyapatite. Arch. Oral Biol. 39, 1063-1069. Go to original source... Go to PubMed...
  38. Vallejo, V., Reyes-Leyva, J., Hernández, J., Ramírez, H., Delannoy, P., Zenteno, E., 2000. Differential expression of sialic acid on porcine organs during the maturation process. Comp. Biochem. Physiol. B: Biochem. Mol. Biol. 126, 415-424. Go to original source... Go to PubMed...
  39. Varki, A., Gagneux, P., 2012. Multifarious roles of sialic acids in immunity. Ann. N. Y. Acad. Sci. 1253, 16-36. Go to original source... Go to PubMed...
  40. Wang, B., 2012. Molecular mechanism underlying sialic acid as an essential nutrient for brain development and cognition. Adv. Nutr. 3, 465S-472S. Go to original source... Go to PubMed...
  41. Wu, A.M., Lisowska, E., Duk, M., Yang, Z., 2009. Lectins as tools in glycoconjugate research. Glycoconj. J. 26, 899-913. Go to original source... Go to PubMed...
  42. Yang, B., Chuang, H., Yang, K.D., 2009. Sialylated glycans as receptor and inhibitor of enterovirus 71 infection to DLD-1 intestinal cells. Virol. J. 6, 141. Go to original source... Go to PubMed...
  43. Yasukawa, Z., Sato, C., Kitajima, K., 2005. Inflammation-dependent changes in alpha2,3-, alpha2,6-, and alpha2,8-sialic acid glycotopes on serum glycoproteins in mice. Glycobiology 15, 827-837. Go to original source... Go to PubMed...
  44. Yolken, R.H., Peterson, J.A., Vonderfecht, S.L., Fouts, E.T., Midthun, K., Newburg, D.S., 1992. Human milk mucin inhibits rotavirus replication and prevents experimental gastroenteritis. J. Clin. Invest. 90, 1984-1991. Go to original source... Go to PubMed...
  45. Zhang, L., Luo, S., Zhang, B., 2016. The use of lectin microarray for assessing glycosylation of therapeutic proteins. MAbs 8, 524-535. Go to original source... Go to PubMed...