J Appl Biomed 16:145-155, 2018 | DOI: 10.1016/j.jab.2017.12.002

Nonlinear Heart Rate Variability based artificial intelligence in lung cancer prediction

Reema Shyamsunder Shukla, Yogender Aggarwal*
Birla Institute of Technology, Department of Bio-Engineering, Mesra, Ranchi, India

Lung cancer is uncontrolled growth of cells that occurs due to exposure to smoke, radiation and chemicals, which causes chronic stress and associated with impaired autonomic nervous system. Nonlinear heart rate variability (HRV) analysis has been suggested to uncover the performance status of lung cancer subjects and distinguish them from healthy controls. The present work obtained tachogram from recorded electrocardiogram of 104 lung cancer subjects and 30 healthy controls to extract HRV indices. The obtained results suggested lowered HRV (altered autonomic nervous system tone) values from Eastern Cooperative Oncology Group (ECOG) 1 to ECOG4. Subject males had higher HRV measures than their female counterparts. The HRV parameters decreased from ECOG PS of 1 to 4. Control females had higher HRV measures than control males. There was no association between age and HRV measures. Statistically, nonlinear HRV features were observed significant. ANN exhibited ECOG1 83.3%, ECOG2 50%, ECOG3 90%, ECOG4 95% and Controls 86.7%. The prediction analysis using artificial neural network (ANN) and support vector machine (SVM) scoring an accuracy of 93.09% and 100% with nonlinear HRV indices as input thus has been suggested to be a tool of prognostic importance.

Keywords: Artificial intelligence; Eastern cooperative oncology group; Heart rate variability; Lung cancer; Nonlinear analysis

Received: July 14, 2017; Revised: November 13, 2017; Accepted: December 11, 2017; Published: May 1, 2018  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Shyamsunder Shukla R, Aggarwal Y. Nonlinear Heart Rate Variability based artificial intelligence in lung cancer prediction. J Appl Biomed. 2018;16(2):145-155. doi: 10.1016/j.jab.2017.12.002.
Download citation

References

  1. Acharya, U.R., Lim, C.M., Joseph, P., 2002. Heart rate variability analysis using correlation dimension and detrended fluctuation analysis. ITBM-RBM 23, 333- 339. Go to original source...
  2. Acharya, U.R., Joseph, K.P., Kannathal, N., Lim, C.M., Suri, J.S., 2006. Heart rate variability: a review. Med. Biol. Eng. Comput. 44, 1031-1051. Go to original source... Go to PubMed...
  3. Aggarwal, Y., Karan, B.M., Das, B.N., Aggarwal, T., Sinha, R.K., 2007. Backpropagation ANN-based prediction of exertional heat illness. J. Med. Syst. 31, 547-550. Go to original source... Go to PubMed...
  4. Aggarwal, Y., Singh, N., Sinha, R.K., 2012. Electrooculogram based study to assess the effects of prolonged eye fixation on autonomic responses and its possible implication in man-machine interface. Health Technol. 2, 89-94. Go to original source...
  5. Aggarwal, Y., Singh, N., Ghosh, S., Sinha, R.K., 2014. Eye gaze-induced mental stress alters the heart rate variability analysis. J. Clin. Eng. 39, 79-89. Go to original source...
  6. Amari, S., Wu, S., 1999. Improving support vector machine classifiers by modifying kernel functions. Neural Netw. 12, 783-789. Go to original source... Go to PubMed...
  7. Bar, K.J., Wernich, K., Boettger, S., Cordes, J., Boettger, M.K., Loffler, S., Agelink, M.W., 2008. Relationship between cardiovagal modulation and psychotic state in patients with paranoid schizophrenia. Psych. Res. 157, 255-257. Go to original source... Go to PubMed...
  8. Baumert, M., Lambert, G.W., Dawood, T., Lambert, E.A., Esler, M.D., McGrane, M., et al., 2009. Short-term heart rate variability and cardiac norepinephrine spillover in patients with depression and panic disorder. Am. J. Physiolo. Heart Circ. Physiol. 297, H674-H679. Go to original source... Go to PubMed...
  9. Carvajal, R., Wessel, N., Vallverdu, M., Caminal, P., Voss, A., 2005. Correlation dimension analysis of heart rate variability in patients with dilated cardiomyopathy. Comput. Meth. Prog. Biomed. 78, 133-140. Go to original source... Go to PubMed...
  10. Chiang, J.K., Kuo, T.B., Fu, C.H., Koo, M., 2013. Predicting 7-day survival using heart rate variability in hospice patients with non-lung cancers. J. Nat. Cancer Inst. 11, 812-813. Go to original source...
  11. Cosma, G., Acampora, G., Brown, D., Rees, R.C., Khan, M., Pockley, A.G., 2016. Prediction of pathological stage in patients with prostate cancer: a neuro-fuzzy model. PLoS One. 11, e0155856. doi:http://dx.doi.org/10.1371/journal.pone.0155856. Go to original source... Go to PubMed...
  12. De Couck, M., Gidron, Y., 2013. Norms of vagal nerve activity, indexed by heart rate variability, in cancer patients. Cancer Epidemiology 37, 737-741. Go to original source... Go to PubMed...
  13. De Couck, M., Brummelen, D.V., Schallier, D., Greve, J.D., Gidron, Y., 2013. The relationship between vagal nerve activity and clinical outcomes in prostate and non-small cell lung cancer patients. Oncol. Reports 30, 2435-2441. Go to original source... Go to PubMed...
  14. De Couck, M., Marechal, R., Moorthamers, S., Van Laethem, J.-L., Gidron, Y., 2016. Vagal nerve activity predicts overall survival in metastatic pancreatic cancer, mediated by inflammation. Cancer Epidemiology. 40 (47), 51. Go to original source... Go to PubMed...
  15. De Souza, A.C.A., Cisternas, J.R., De Abreu, L.C., Roque, A.L., Monteiro, C.B.M., Adami, F., et al., 2014. Fractal correlation property of heart rate variability in response to the postural change maneuver in healthy women. Int. Arch. Med. 7, 25. Go to original source... Go to PubMed...
  16. Fojt, O., Holcik, J., 1998. Applying nonlinear dynamics to ECG signal processing. IEEE Eng. Med. Biol. Mag. 17, 96-101. Go to original source... Go to PubMed...
  17. Garland, L.H., Beier, R.L., Coulson, W., Heald, J.H., Stein, R.L., 1968. The apparent sites of origin of carcinomas of the lung. Radiology 78, 1-11. Go to original source... Go to PubMed...
  18. Gribbin, B., Pickering, T.G., Sleight, P., Peto, R., 1971. Effect of age and high blood pressure on barorefiex sensitivity in man. Circ. Res. 29, 424-431. Go to original source... Go to PubMed...
  19. Guo, Y., Koshy, S., Hui, D., Palmer, J.L., Shin, K., Bozkurt, M., Yusuf, S.W., 2015. Prognostic value of heart rate variability in patients with cancer. J. Clin. Neurophysiol. 32, 516-520. Go to original source... Go to PubMed...
  20. Kim, D.H., Kim, J.A., Choi, Y.S., Kim, S.H., Lee, J.Y., Kim, Y.E., 2010. Heart rate variability and length of in hospice cancer patients. J. Korean Med. Sci. 25, 1140-1145. Go to original source... Go to PubMed...
  21. Li, S., Sun, Y., Gao, D., 2013. Role of the nervous system in cancer metastasis. Oncol. Letters. 5, 1101-1111. Go to original source... Go to PubMed...
  22. Lilenbaum, R.C., Cashy, J., Hensing, T.A., Young, S., Cella, D., 2008. Prevalence of poor performance status in lung cancer patients: implications for research. J. Thorac. Oncol. 3, 125-129. Go to original source... Go to PubMed...
  23. Liu, C., Liu, C., Shao, P., Li, L., Sun, X., Wang, X., Liu, F., 2010. Comparison of different threshold values r for approximate entropy: application to investigate the heart rate variability between heart failure and healthy control groups. Physiol. Meas. 32, 167-180. Go to original source... Go to PubMed...
  24. Marwan, N., Wessel, N., Meyerfeldt, U., Schirdewan, A., Kurths, J., 2002. Recurrenceplot-based measures of complexity and their application to heart-ratevariability data. Phys. Rev. E 66 (2 Pt 2), 026702. Go to original source... Go to PubMed...
  25. Mohebbi, M., Ghassemian, H., Asl, B.M., 2011. Structure of the recurrence plot of heart rate variability signal as a tool for predicting the onset of paroxysmal atrial fibrillation. J. Med. Sig. Sens. 1, 113-121. Go to original source...
  26. Roy, B., Ghatak, S., 2013. Nonlinear methods to assess changes in heart rate variability in type 2 diabetic patients. Arq. Bras. Cardiol. 101, 317-327. Go to original source... Go to PubMed...
  27. Saranya, K., Pal, G.K., Habeebullah, S., Pal, P., 2015. Analysis of Poincare plot of heart rate variability in the assessment of autonomic dysfunction in patients with polycystic ovary syndrome. Int. J. Clin. Exp. Physiol. 2, 34. Go to original source...
  28. Schlenker, J., Nedelka, T., Riedlbauchoven, L., Socha, V., Hana, K., Kutilek, P., 2014. Recurrence quantification analysis: a promising method for data evaluation in medicine. Eur. J. Biomed. Inform. 10, en35-en40. Go to original source...
  29. Schubert, C., Lambertz, M., Nelesen, R.A., Bardwell, W., Choi, J.B., Dimsdale, J.E., 2009. Effects of stress on heart rate complexity Àa comparison between shortterm and chronic stress. Biol. Psychol. 80, 325-332. Go to original source... Go to PubMed...
  30. Schumacher, A., 2004. Linear and nonlinear approaches to the analysis of R-R interval variability. Biol. Res. Nursing. 5, 211-221. Go to original source... Go to PubMed...
  31. Shukla, R.S., Aggarwal, Y., 2017. Time-domain heart rate variability-based computeraided prognosis of lung cancer. Ind. J. Cancer doi:http://dx.doi.org/10.4103/ijc.IJC_395_17 in press. Go to original source... Go to PubMed...
  32. Signorini, M.G., Marchetti, F., Cerutti, S., 2001. Applying nonlinear noise reduction in the analysis of heart rate variability. IEEE Eng. Med. Biol. Mag. 20, 59-68. Go to original source... Go to PubMed...
  33. Sinha, R.K., Aggarwal, Y., Das, B.N., 2007a. Backpropagation artificial neural network detects changes in electro-encephalogram power spectra of syncopic patients. J. Med. Syst. 31, 63-68. Go to original source... Go to PubMed...
  34. Sinha, R.K., Aggarwal, Y., Das, B.N., 2007b. Backpropagation artificial neural network classifier to detect changes in heart sound due to mitral valve regurgitation. J. Med. Syst. 31, 205-209. Go to original source... Go to PubMed...
  35. Skinner, J.E., Pratt, C.M., Vybiral, T., 1993. A reduction in the correlation dimension of heartbeat intervals precedes imminent ventricular fibrillation in human subjects. Am. Heart J. 125, 731-743. Go to original source... Go to PubMed...
  36. Sorensen, J.B., Klee, M., Palshof, T., Hansen, H.H., 1993. Performance status assessment in cancer patients. An inter-observer variability study. Br. J. Cancer 67, 773-775. Go to original source... Go to PubMed...
  37. Tarvainen, M.P., Niskanen, J.P., Lipponen, J.A., Ranta-Aho, P.O., Karjalainen, P.A., 2014. Kubios HRV Àheart rate variability analysis software. Comput. Meth. Prog. Biomed. 113, 210-220. Go to original source... Go to PubMed...
  38. Thayer, J., Sternberg, E., 2006. Beyond heart rate variability: vagal regulation of allostatic systems. Ann. New York Acad. Sci. 1088, 361-372. Go to original source... Go to PubMed...
  39. Utomo, C.P., Kardiana, A., Yuliwulandari, R., 2014. Breast cancer diagnosis using artificial neural networks with extreme learning techniques. Int. J. Adv. Res. Artif. Intel. 3, 10-14. Go to original source...
  40. Voss, A., Schroeder, R., Heitmann, A., Peters, A., Perz, S., 2015. Short-term heart rate variability-influences of gender and age in healthy subjects. PLoS One 10, e0118308. doi:http://dx.doi.org/10.1371/journal.pone.0118308. Go to original source... Go to PubMed...
  41. Walsh, D., Nelson, K.A., 2002. Autonomic nervous system dysfunction in advanced cancer. Support. Care Cancer 10, 523-528. Go to original source... Go to PubMed...
  42. Walsh, D., Donnelly, S., Rybicki, L., 2000. The symptoms of advanced cancer: relationship to age, gender, and performance status in 1,000 patients. Support. Care Cancer 8, 175-179. Go to original source... Go to PubMed...
  43. Weinberg, R.A., 1996. E2F and cell proliferation: a world turned upside down. Cell 85, 457-459. Go to original source... Go to PubMed...
  44. Yeh, R.-G., Shieh, J.-S., Han, Y.-Y., Wang, Y.-J., Tseng, S.-C., 2006. Detrended fluctuation analysis of short-term heart rate variability in surgical intensive care units. Biomed. Eng. Appl. Basis. Commun. 18, 21-26. Go to original source...
  45. Yeh, R.-G., Chen, G.-Y., Shieh, J.-S., Kuo, C.-D., 2010. Parameters investigation of detrended fluctuation analysis for short-term human heart rate variability. J. Med. Biol. Eng. 30, 277-282. Go to original source...
  46. Yeragani, V.K., Radhakrishna, R.K., Tancer, M., Uhde, T., 2002. Nonlinear measures of respiration: respiratory irregularity and increased chaos of respiration in patients with panic disorder. Neuropsychobiology 46, 111-120. Go to original source... Go to PubMed...