J Appl Biomed 16:221-231, 2018 | DOI: 10.1016/j.jab.2018.02.002

Fruit waste (peel) as bio-reductant to synthesize silver nanoparticles with antimicrobial, antioxidant and cytotoxic activities

Annua, Shakeel Ahmeda,d, Gurpreet Kaurb,c, Praveen Sharmac, Sandeep Singhc, Saiqa Ikrama,*
a Jamia Millia Islamia, Department of Chemistry, Bio/Polymers Research Laboratory, New Delhi, India
b Central University of Punjab, Centre for Environmental Science and Technology, Bathinda, India
c Central University of Punjab, Centre for Human Genetics and Molecular Medicine, Laboratory of Molecular Medicine, Bathinda, India
d Department of Chemistry, Government Degree College Mendhar, Jammu and Kashmir, India

Since last decade, biogenic synthesis of metal or metal-oxide nanoparticles is emerging as an alternative method, which is environment friendly, simple and safe to use. In this article, fruit waste (peel) extract (FWE) of three citrus fruits viz. Citrus limon, Citrus sinensis, and Citrus limetta were used as bio-reductant for green and sustainable synthesis of silver nanoparticles (AgNPs). As-synthesised AgNPs were characterized by using UV-vis spectroscopy, Dynamic light scattering, and High Resolution Transmission Electron Microscopy. TEM studies revealed 9-46 nm size range of synthesized AgNPs. The antimicrobial and antioxidant activities were also studied by using Agar well diffusion method and DPPH Assay, respectively. Nanoparticles showed good antimicrobial activity against both Gram positive (S. aureus) and Gram negative (E. coli) bacteria. Further, bioactivity assays revealed selective cytotoxicity (anticancer) of the nanoparticles against human lung cancer cell line A549. The nanoparticles are able to induce cancer cell specific apoptosis at G0/G1 phase of cell cycle. The results showed potential mechanism of action of nanoparticles via augmentation of antioxidant system in cancer cells. Over all, this study show multifaceted potential bioactivities of nanoparticles generated from fruit waste.

Keywords: Biosynthesis; Citrus fruits; Silver nanoparticles; Antimicrobial; Antioxidant; Anticancer

Received: March 21, 2017; Revised: December 8, 2017; Accepted: February 5, 2018; Published: August 1, 2018  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Annu, Ahmed S, Kaur G, Sharma P, Singh S, Ikram S. Fruit waste (peel) as bio-reductant to synthesize silver nanoparticles with antimicrobial, antioxidant and cytotoxic activities. J Appl Biomed. 2018;16(3):221-231. doi: 10.1016/j.jab.2018.02.002.
Download citation

References

  1. Adelere, I., Lateef, A., 2016. A novel approach to the green synthesis of metallic nanoparticles: the use of agro-wastes, enzymes, and pigments. Nanotechnol. Rev. 5 (6), 567-587. Go to original source...
  2. Ahmad, N., Sharma, S., Rai, R., 2012. Rapid green synthesis of silver and gold nanoparticles using peels of Punica granatum. Adv. Mater. Lett. 3 (5), 1-13. doi: http://dx.doi.org/10.5185/amlett.2012.5357. Go to original source...
  3. Ahmed, S., Ikram, S., 2015. Silver nanoparticles: one pot green synthesis using Terminalia arjuna extract for biological application. J. Nanomed. Nanotechnol. 6, 4.
  4. Ahmed, S., Ahmad, M., Swami, B.L., Ikram, S., 2016a. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. J. Adv. Res. 7, 17-28. Go to original source... Go to PubMed...
  5. Ahmed, S., Annu Ikram, S., Yudha, S.S., 2016b. Biosynthesis of gold nanoparticles: a green approach. J. Photochem. Photobiol. 161, 141-153. Go to original source... Go to PubMed...
  6. Ahmed, S., Annu Zafeer, I., Ikram, S., 2016c. One-step method for formation of silver nanoparticles using withania somnifera extract for antimicrobial activities. J. Bionanosci. 10, 1-7. Go to original source...
  7. Ahmed, S., Annu Ali, S., Ikram, S., 2017a. A review on biogenic synthesis of ZnO nanoparticles using plant extracts and microbes: a prospect towards green chemistry. J. Photochem. Photobiol. 166, 272-284. Go to original source... Go to PubMed...
  8. Ahmed, S., Saifullah, Ahmad, M., Swami, B.L., Ikram, S., 2017b. Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract. J. Radiat. Res. Appl. Sci. 9 (1), 1-7. Go to original source...
  9. Aksoy, L., Kolay, E., Agilönü, Y., Aslan, Z., Kargioglu, M., 2013. Free radical scavenging activity, total phenolic content, total antioxidant status, and total oxidant status of endemic Thermopsis turcica. Saudi J. Biol. Sci. 20, 235-239. Go to original source... Go to PubMed...
  10. Anand, B.G., Thomas, C.K.N., Prakash, S., Kumar, C.S., 2015. Biosynthesis of silver nano-particles by marine sediment fungi for a dose dependent cytotoxicity against {HEp2} cell lines. Biocatal. Agric. Biotechnol. 4, 150-157. Go to original source...
  11. Anandalakshmi, K., Venugobal, J., Ramasamy, V., 2016. Characterization of silver nanoparticles by green synthesis method using Pedalium murex leaf extract and their antibacterial activity. Appl. Nanosci. 6, 399-408. Go to original source...
  12. Anastas, P.T., Warner, J.C., 1998. Green Chemistry: Theory and Practice. Oxford University Press, New York.
  13. AshaRani, P.V., Kah, Low, Mun, G., Hande, M.P., Valiyaveettil, S., 2009. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 3, 279-290. Go to original source... Go to PubMed...
  14. Azeez, L., Lateef, A., Adebisi, S.A., 2017a. Silver nanoparticles (AgNPs) biosynthesized using pod extract of Cola nitida enhances antioxidant activity and phytochemical composition of Amaranthus caudatus Linn. Appl. Nanosci. 7, 59- 66. Go to original source...
  15. Azeez, M.A., Lateef, A., Asafa, T.B., Yekeen, T.A., Akinboro, A., Oladipo, I.C., et al., 2017b. Biomedical applications of cocoa bean extract-mediated silver nanoparticles as antimicrobial, larvicidal and anticoagulant agents. J. Clust. Sci. 28, 149-164. Go to original source...
  16. Baharara, J., Namvar, F., Mousavi, M., Ramezani, T., Mohamad, R., 2014. Antiangiogenesis effect of biogenic silver nanoparticles synthesized using Saliva officinalis on chick chorioalantoic membrane (CAM). Molecules 19, 13498- 13508. Go to original source... Go to PubMed...
  17. Bankar, A., Joshi, B., Kumar, A.R., Zinjarde, S., 2010. Banana peel extract mediated novel route for the synthesis of silver nanoparticles. Colloids Surf. A Physicochem. Eng. Asp. 368, 58-63. Go to original source...
  18. Chabuck, S.I.A., Chabuck, N.A.G., 2014. In vitro and in vivo effect of three aqueous plant extract on pathogenicity of Klebsiella pneumonia isolated from patient with urinary tract infection. World J. Pharm. Res. 3, 160-179.
  19. Chen, D., Zhang, Y., Chen, B., Kang, Z., 2013. Coupling effect of microwave and mechanical forces during the synthesis of ferrite nanoparticles by microwaveassisted ball milling. Ind. Eng. Chem. Res. 52, 14179-14184. doi:http://dx.doi. org/10.1021/ie401890j. Go to original source...
  20. Dakhil, A.S., 2017. Biosynthesis of silver nanoparticle (AgNPs) using Lactobacillus and their effects on oxidative stress biomarkers in rats. J. King Saud Univ.-Sci. 29 (4), 462-467. Go to original source...
  21. David, L., Moldovan, B., Vulcu, A., Olenic, L., Perde-Schrepler, M., Fischer-Fodor, E., et al., 2014. Green synthesis, characterization and anti-inflammatory activity of silver nanoparticles using European black elderberry fruits extract. Colloids Surf. B Biointerfaces 122, 767-777. Go to original source... Go to PubMed...
  22. Dubey, D., Balamurugan, K., Agrawal, R.C., Verma, R., Jain, R., 2011. Evaluation of antibacterial and antioxidant activity of methanolic and hydromethanolic extract of sweet orange peels. Recent Res. Sci. Technol. 3, 22-25.
  23. Durand, N., Storz, P., 2017. Targeting reactive oxygen species in development and progression of pancreatic cancer. Expert Rev. Anticancer Ther. 17 (1), 19-31. Go to original source... Go to PubMed...
  24. Esumi, K., Tano, T., Torigoe, K., Meguro, K., 1990. Preparation and characterization of bimetallic Pd-Cu colloids by thermal decomposition of their acetate compounds in organic solvents. Chem. Mater. 2, 564-567. Go to original source...
  25. Fariq, A., Khan, T., Yasmin, A., 2017. Microbial synthesis of nanoparticles and their potential applications in biomedicine. J. Appl. Biomed. 15, 241-248. Go to original source...
  26. Feng, Q.L., Wu, J., Chen, G.Q., Cui, F.Z., Kim, T.N., Kim, J.O., 2000. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J. Biomed. Mater. Res. 52, 662-668. Go to original source...
  27. Foldbjerg, R., Anh, D., Herman, D., 2011. Cytotoxicity and genotoxicity of silver nanoparticles in the human lung cancer cell line, A549. Arch. Toxicol. 743-750. Go to original source...
  28. Gauthami, M., Srinivasan, N., Goud, N.M., Boopalan, K., Thirumurugan, K., 2015. Synthesis of silver nanoparticles using Cinnamomum zeylanicum bark extract and its antioxidant activity. Nanosci. Nanotechnol.-ASIA 5 (1), 2-7. Go to original source...
  29. Goia, D.V., Matijevic, E., 1998. Preparation of monodispersed metal particles. New J. Chem. 22 (11), 1203-1215. Go to original source...
  30. Gonzalez-Rodriguez, R.M., Rial-Otero, R., Cancho-Grande, B., Gonzalez-Barreiro, C., Simal-Gandara, J., 2011. A review on the fate of pesticides during the processes within the food-production chain. Crit. Rev. Food Sci. Nutr. 51, 99-114. Go to original source... Go to PubMed...
  31. Govindarajan, M., AlQahtani, F.S., AlShebly, M.M., Benelli, G., 2017. One-pot and ecofriendly synthesis of silver nanocrystals using Adiantum raddianum: toxicity against mosquito vectors of medical and veterinary importance. J. Appl. Biomed. 15, 87-95. Go to original source...
  32. Gupta, A.K., Gupta, M., 2005. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26, 3995-4021. Go to original source... Go to PubMed...
  33. Henglein, A., 1993. Physicochemical properties of small metal particles in solution: microelectrode reactions, chemisorption, composite metal particles, and the atom-to-metal transition. J. Phys. Chem. 97, 5457-5471. Go to original source...
  34. Henglein, A., 1999. Radiolytic preparation of ultrafine colloidal gold particles in aqueous solution:optical spectrum, controlled growth, and some chemical reactions. Langmuir 15, 6738-6744. Go to original source...
  35. Henglein, A., 2001. Reduction of Ag(CN)2- on silver and platinum colloidal nanoparticles. Langmuir 17, 2329-2333. Go to original source...
  36. Hulkoti, N.I., Taranath, T.C., 2014. Biosynthesis of nanoparticles using microbes-a review. Colloids Surf. B Biointerfaces 121, 474-483. Go to original source... Go to PubMed...
  37. Hussain, K.A., Tarakji, B., Kandy, B.P.P., John, J., Mathews, J., Ramphul, V., Divakar, D. D., 2015. Antimicrobial effects of citrus sinensis peel extracts against periodontopathic bacteria: an in vitro study. Rocz. Pan  stwowego Zakładu Hig. 66, 173-178.
  38. Iravani, S., Korbekandi, H., Mirmohammadi, S.V., Zolfaghari, B., 2014. Synthesis of silver nanoparticles: chemical, physical and biological methods. Res. Pharm. Sci. 9 (6), 385-406. Go to PubMed...
  39. Kahrilas, G.A., Wally, L.M., Fredrick, S.J., Hiskey, M., Prieto, A.L., Owens, J.E., 2014. Microwave-assisted green synthesis of silver nanoparticles using orange peel extract. ACS Sustain. Chem. Eng. 2, 367-376. Go to original source...
  40. Kaviya, S., Santhanalakshmi, J., Viswanathan, B., Muthumary, J., Srinivasan, K., 2011. Biosynthesis of silver nanoparticles using citrus sinensis peel extract and its antibacterial activity. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 79, 594- 598. Go to original source... Go to PubMed...
  41. Kumar, R., Roopan, S.M., Prabhakarn, A., Khanna, V.G., Chakroborty, S., 2012. Agricultural waste Annona squamosa peel extract: biosynthesis of silver nanoparticles. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 90, 173-176. Go to original source... Go to PubMed...
  42. Lateef, A., Adelere, I.A., Gueguim-Kana, E.B., Asafa, T.B., Beukes, L.S., 2015. Green synthesis of silver nanoparticles using keratinase obtained from a strain of Bacillus safensis LAU 13. Int. Nano Lett. 5, 29-35. Go to original source...
  43. Lateef, A., Akande, M.A., Azeez, M.A., Ojo, S.A., Folarin, B.I., Gueguim-Kana, E.B., Beukes, L.S., 2016a. Phytosynthesis of silver nanoparticles (AgNPs) using miracle fruit plant (Synsepalum dulcificum) for antimicrobial, catalytic, anticoagulant, and thrombolytic applications. Nanotechnol. Rev. 5 (6), 507-520. Go to original source...
  44. Lateef, A., Akande, M.A., Ojo, S.A., Folarin, B.I., Gueguim-Kana, E.B., Beukes, L.S., 2016b. Paper wasp nest-mediated biosynthesis of silver nanoparticles for antimicrobial, catalytic, anticoagulant, and thrombolytic applications. 3 Biotech. 6 (2), 140. Go to original source... Go to PubMed...
  45. Lateef, A., Azeez, M.A., Asafa, T.B., Yekeen, T.A., Akinboro, A., Oladipo, I.C., et al., 2016c. Biogenic synthesis of silver nanoparticles using a pod extract of Cola nitida: antibacterial and antioxidant activities and application as a paint additive. J. Taibah Univ. Sci. 10, 551-562. Go to original source...
  46. Lateef, A., Azeez, M.A., Asafa, T.B., Yekeen, T.A., Akinboro, A., Oladipo, I.C., et al., 2016d. Cocoa pod husk extract-mediated biosynthesis of silver nanoparticles: its antimicrobial, antioxidant and larvicidal activities. J. Nanostruct. Chem. 6, 159-169. Go to original source...
  47. Lateef, A., Ojo, S.A., Elegbede, J.A., 2016e. The emerging roles of arthropods and their metabolites in the green synthesis of metallic nanoparticles. Nanotechnol. Rev. 5, 601-622. Go to original source...
  48. Lateef, A., Ojo, S.A., Oladejo, S.M., 2016f. Anti-candida, anti-coagulant and thrombolytic activities of biosynthesized silver nanoparticles using cell-free extract of Bacillus safensis LAU 13. Process Biochem. 51, 1406-1412. Go to original source...
  49. Liu, S., Wei, W., Wang, Y., Fang, L., Wang, L., Li, F., 2016. Ultrasensitive electrochemical detection of nucleic acid by coupling an autonomous cascade target replication and enzyme/gold nanoparticle-based post-amplification. Biosens. Bioelectron. 80, 208-214. Go to original source... Go to PubMed...
  50. Marinova, E.M., Yanishlieva, N.V., 1997. Antioxidative activity of extracts from selected species of the family Lamiaceae in sunflower oil. Food Chem. 58, 245- 248. Go to original source...
  51. Morones, J.R., Elechiguerra, J.L., Camacho, A., Holt, K., Kouri, J.B., Ramirez, J.T., Yacaman, M.J., 2005. The bactericidal effect of silver nanoparticles. Nanotechnology 16, 2346-2353. Go to original source... Go to PubMed...
  52. Nisha, S.N., Aysha, O.S., Nasar, J.S., Kumar, P.V., Valli, S., Nirmala, P., Reena, A., 2014. Lemon peels mediated synthesis of silver nanoparticles and its antidermatophytic activity. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 124, 194-198. Go to original source... Go to PubMed...
  53. Panáček, A., Kolář, M., Večeřová, R., Prucek, R., Soukupová, J., Kryštof, V., et al., 2009. Antifungal activity of silver nanoparticles against Candida spp. Biomaterials 30, 6333-6340. Go to original source... Go to PubMed...
  54. Philip, D., Unni, C., Aromal, S.A., Vidhu, V.K., 2011. Murraya koenigii leaf-assisted rapid green synthesis of silver and gold nanoparticles. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 78, 899-904. Go to original source... Go to PubMed...
  55. Philip, D., 2011. Mangifera indica leaf-assisted biosynthesis of well-dispersed silver nanoparticles. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 78 (1), 327-331. Go to original source... Go to PubMed...
  56. Phull, A.-R., Abbas, Q., Ali, A., Raza, H., Kim, S.J., Zia, M., Haq, I., 2016. Antioxidant, cytotoxic and antimicrobial activities of green synthesized silver nanoparticles from crude extract of Bergenia ciliata. Futur. J. Pharm. Sci. 2, 31-36. Go to original source...
  57. Popp, J., Pet-Ho, K., Nagy, J., 2013. Pesticide productivity and food security-a review. Agron. Sustain. Dev. 33, 243-255. Go to original source...
  58. Prathna, T.C., Chandrasekaran, N., Raichur, A.M., Mukherjee, A., 2011. Biomimetic synthesis of silver nanoparticles by Citrus limon (lemon) aqueous extract and theoretical prediction of particle size. Colloids Surf. B Biointerfaces 82, 152- 159. Go to original source... Go to PubMed...
  59. Raveendran, P., Fu, J., Wallen, S.L., Hill, C., Carolina, N., 2003. Completely green synthesis and stabilization of metal nanoparticles. J. Am. Chem. Soc. 13940- 13941. Go to original source... Go to PubMed...
  60. Rodríguez-Sánchez, L., Blanco, M.C., López-Quintela, M.A., 2000. Electrochemical synthesis of silver nanoparticles. J. Phys. Chem. B 104, 9683-9688. Go to original source...
  61. Scaramuzza, S., Zerbetto, M., Amendola, V., 2016. Synthesis of gold nanoparticles in liquid environment by laser ablation with geometrically confined configurations: insights to improve size control and productivity. J. Phys. Chem. C 120, 9453-9463. Go to original source...
  62. Sharma, V.K., Yngard, R.A., Lin, Y., 2009. Silver nanoparticles: green synthesis and their antimicrobial activities. Adv. Colloid Interface Sci. 145, 83-96. Go to original source... Go to PubMed...
  63. Taleb, A., Petit, C., Pileni, M.P., 1997. Synthesis of highly monodisperse silver nanoparticles from AOT reverse micelles:a way to 2D and 3D self-organization. Chem. Mater. 9, 950-959. Go to original source...
  64. Trefry, J.C., Wooley, D.P., 2012. Rapid assessment of antiviral activity and cytotoxicity of silver nanoparticles using a novel application of the tetrazolium-based colorimetric assay. J. Virol. Methods 183, 19-24. Go to original source... Go to PubMed...
  65. Tyupa, D.V., Kalenov, S.V., Baurina, M.M., Yakubovich, L.M., Morozov, A.N., Zakalyukin, R.M., et al., 2016. Efficient continuous biosynthesis of silver nanoparticles by activated sludge micromycetes with enhanced tolerance to metal ion toxicity. Enzyme Microb. Technol. 95, 137-145. Go to original source... Go to PubMed...
  66. Veerasamy, R., Xin, T.Z., Gunasagaran, S., Xiang, T.F.W., Yang, E.F.C., Jeyakumar, N., Dhanaraj, S.A., 2011. Biosynthesis of silver nanoparticles using mangosteen leaf extract and evaluation of their antimicrobial activities. J. Saudi Chem. Soc. 15, 113-120. Go to original source...
  67. Wang, Y., Herron, N., 1991. Nanometer-sized semiconductor clusters: materials synthesis, quantum size effects, and photophysical properties. J. Phys. Chem. 95, 525-532. Go to original source...
  68. Zhou, D., Shao, L., Spitz, D.R., 2014. Reactive oxygen species in normal and tumour stem cells. Adv. Cancer Res. 122, 1-67. Go to original source... Go to PubMed...
  69. Zhu, J., Liu, S., Palchik, O., Koltypin, Y., Gedanken, A., 2000. Shape-controlled synthesis of silver nanoparticles by pulse sonoelectrochemical methods. Langmuir 16, 6396-6399. Go to original source...