J Appl Biomed 16:350-357, 2018 | DOI: 10.1016/j.jab.2018.01.006

JNK inhibitor CC-930 reduces fibrosis in a murine model of Nf1-deficient fracture repair

Nikita Deoa,b, Jad El-Hossa,b, Mille Kolinda, Kathy Mikuleca, Lauren Peacocka, David G. Littlea,b, Aaron Schindelera,b,*
a The Children's Hospital at Westmead, Orthopaedic Research & Biotechnology Unit, Sydney, Australia
b University of Sydney, Sydney Medical School, Discipline of Paediatrics and Child Health, Sydney, Australia

Tibial pseudarthrosis often features deficient bone formation, excessive bone resorption, and extensive pathological fibrosis, particularly in individuals with Neurofibromatosis type I (NF1). It was hypothesized that overactive NF1-Ras-JNK signalling may underlie the pathological fibrosis, and that this could be treated via a JNK antagonist. CC-930, a small molecule JNK inhibitor, was trialed in closed fractures in wild type mice CC-930 (25 mg/kg/twice daily) was dosed throughout fracture healing (D2-21) and during the latter stages of repair (D11-21). All fractures healed by D21, regardless of treatment, with some of the CC-930 (D11-21) treatment group showing early bridging. CC-930 (D11-21) was tested in an Nf1-null fracture model where Nf1 was inactivated by Ad-Cre virus injection in Nf1flox/flox mice; these mice also possessed a Cre-responsive tdTomato transgene. CC-930 resulted in a significant decrease in non-unions (93% vehicle vs. 64% CC-930, p < 0.01). Local treatment with the bone anabolic rhBMP-2 (10 μg) increased union and callus bone volume, but also increased the fibrotic tissue at the fracture site. Fractures treated with a combination of rhBMP-2 (10 μg) and CC-930 were all partially or fully bridged by D21 (p < 0.01 vs. vehicle) and there was a significant decrease in fibrosis vs. rhBMP-2 alone (p < 0.01). In untreated Nf1-null fractures, the tdTomato transgene was expressed in fibrous tissue at the fracture site, but not in the newly forming bone. These data suggest that JNK inhibition may be an effective therapeutic approach for reducing pathological fibrosis in NF1 tibial pseudarthrosis, however other adjunctive strategies may be required to augment bone formation.

Keywords: NF1; Neurofibromatosis; Pseudarthrosis; BMP-2; JNK; CC-930

Received: March 16, 2017; Revised: January 3, 2018; Accepted: January 17, 2018; Published: November 1, 2018  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Deo N, El-Hoss J, Kolind M, Mikulec K, Peacock L, Little DG, Schindeler A. JNK inhibitor CC-930 reduces fibrosis in a murine model of Nf1-deficient fracture repair. J Appl Biomed. 2018;16(4):350-357. doi: 10.1016/j.jab.2018.01.006.
Download citation

References

  1. Birke, O., Schindeler, A., Ramachandran, M., Cowell, C.T., Munns, C.F., Bellemore, M., Little, D.G., 2010. Preliminary experience with the combined use of recombinant bone morphogenetic protein and bisphosphonates in the treatment of congenital pseudarthrosis of the tibia. J. Child. Orthop. 4 (6), 507-517. Go to original source... Go to PubMed...
  2. Daginakatte, G.C., Gianino, S.M., Zhao, N.W., Parsadanian, A.S., Gutmann, D.H., 2008. Increased c-Jun-NH2-kinase signalling in neurofibromatosis-1 heterozygous microglia drives microglia activation and promotes optic glioma proliferation. Cancer Res. 68 (24), 10358-10366. Go to original source... Go to PubMed...
  3. Davis, R.J., 2000. Signal transduction by the JNK group of MAP kinases. Cell 103 (2), 239-252. Go to original source... Go to PubMed...
  4. de la Croix Ndong, J., Stevens, D.M., Vignaux, G., Uppuganti, S., Perrien, D.S., Yang, X., et al., 2015. Combined MEK inhibition and BMP2 treatment promotes osteoblast differentiation and bone healing in Nf1Osx À/À mice. J. Bone Miner. Res. 30 (1), 55-63. Go to original source... Go to PubMed...
  5. El Khassawna, T., Toben, D., Kolanczyk, M., Schmidt-Bleek, K., Koennecke, I., Schell, H., et al., 2012. Deterioration of fracture healing in the mouse model of NF1 long bone dysplasia. Bone 51 (4), 651-660. Go to original source... Go to PubMed...
  6. El-Hoss, J., Sullivan, K., Cheng, T., Yu, N.Y.C., Bobyn, J.D., Peacock, L., et al., 2012. A murine model of neurofibromatosis type 1 tibial pseudarthrosis featuring proliferative fibrous tissue and osteoclast-like cells. J. Bone Miner. Res. 27 (1), 68-78. Go to original source... Go to PubMed...
  7. El-Hoss, J., Cheng, T., Carpenter, E.C., Sullivan, K., Deo, N., Mikulec, K., et al., 2014a. A combination of rhBMP-2 (Recombinant Human Bone Morphogenetic Protein-2) and MEK (MAP Kinase/ERK Kinase) inhibitor PD0325901 increases bone formation in a murine model of neurofibromatosis type I Pseudarthrosis. J. Bone Joint Surg. 96 (14), e117. Go to original source... Go to PubMed...
  8. El-Hoss, J., Kolind, M., Jackson, M.T., Deo, N., Mikulec, K., McDonald, M.M., et al., 2014b. Modulation of endochondral ossification by MEK inhibitors PD0325901 and AZD6244 (Selumetinib). Bone 59, 151-161. Go to original source... Go to PubMed...
  9. Elefteriou, F., Benson, M.D., Sowa, H., Starbuck, M., Liu, X., Ron, D., et al., 2006. ATF4 mediation of NF1 functions in osteoblast reveals a nutritional basis for congenital skeletal dysplasia. Cell Metab. 4 (6), 441-451. Go to original source... Go to PubMed...
  10. Evans, D.G., Howard, E., Giblin, C., Clancy, T., Spencer, H., Huson, S.M., Lalloo, F., 2010. Birth incidence and prevalence of tumour-prone syndromes: estimates from a UK family genetic register service. Am. J. Med. Genet. A 152A (2), 327-332. Go to original source... Go to PubMed...
  11. Han, Z., Boyle, D.L., Chang, L., Bennett, B., Karin, M., Yang, L., et al., 2001. c-Jun Nterminal kinase is required for metalloproteinase expression and joint destruction in inflammatory arthritis. J. Clin. Invest. 108 (1), 73-81. Go to original source... Go to PubMed...
  12. Hefti, F., Bollini, G., Dungl, P., Fixsen, J., Grill, F., Ippolito, E., et al., 2000. Congenital pseudarthrosis of the tibia: history, etiology, classification, and epidemiologic data. J. Pediatr. Orthop. B 9 (1), 11-15. Go to original source... Go to PubMed...
  13. Johnson, G.L., Lapadat, R., 2002. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 298 (5600), 1911-1912. Go to original source... Go to PubMed...
  14. Kanno, Y., Ishisaki, A., Yoshida, M., Tokuda, H., Numata, O., Kozawa, O., 2005. SAPK/ JNK plays a role in transforming growth factor-beta-induced VEGF synthesis in osteoblasts. Hormone and metabolic research. Hormones et Metab. 37 (3), 140- 145. Go to original source... Go to PubMed...
  15. Kolanczyk, M., Kuhnisch, J., Kossler, N., Osswald, M., Stumpp, S., Thurisch, B., et al., 2008. Modelling neurofibromatosis type 1 tibial dysplasia and its treatment with lovastatin. BMC Med. 6, 21. Go to original source... Go to PubMed...
  16. Madisen, L., Zwingman, T.A., Sunkin, S.M., Oh, S.W., Zariwala, H.A., Gu, H., et al., 2010. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat. Neurosci. 13 (1), 133-140. Go to original source... Go to PubMed...
  17. Plantevin Krenitsky, V., Nadolny, L., Delgado, M., Ayala, L., Clareen, S.S., Hilgraf, R., et al., 2012. Discovery of CC-930, an orally active anti-fibrotic JNK inhibitor. Bioorg. Med. Chem. Lett. 22 (3), 1433-1438. Go to original source... Go to PubMed...
  18. Rafii, R., Juarez, M.M., Albertson, T.E., Chan, A.L., 2013. A review of current and novel therapies for idiopathic pulmonary fibrosis. J. Thoracic Dis. 5 (1), 48-73.
  19. Reich, N., Tomcik, M., Zerr, P., Lang, V., Dees, C., Avouac, J., et al., 2012. N-terminal kinase as a potential molecular target for prevention and treatment of dermal fibrosis. Ann. Rheum. Dis. 71 (June (5)), 737-745. Go to original source... Go to PubMed...
  20. Rhodes, S.D., Wu, X., He, Y., Chen, S., Yang, H., Staser, K.W., et al., 2013. Hyperactive transforming growth factor-beta1 signalling potentiates skeletal defects in a neurofibromatosis type 1 mouse model. J. Bone Miner. Res. 28 (12), 2476-2489. Go to original source... Go to PubMed...
  21. Richards, B.S., Oetgen, M.E., Johnston, C.E., 2010. The use of rhBMP-2 for the treatment of congenital pseudarthrosis of the tibia: a case series. J. Bone Joint Surg. 92 (1), 177-185. Go to original source... Go to PubMed...
  22. Schindeler, A., Little, D.G., 2008. Recent insights into bone development, homeostasis, and repair in type 1 neurofibromatosis (NF1). Bone 42 (4), 616- 622. Go to original source... Go to PubMed...
  23. Schindeler, A., Morse, A., Harry, L., Godfrey, C., Mikulec, K., McDonald, M., et al., 2008a. Models of tibial fracture healing in normal and Nf1-deficient mice. J. Orthop. Res. 26 (8), 1053-1060. Go to original source... Go to PubMed...
  24. Schindeler, A., Ramachandran, M., Godfrey, C., Morse, A., McDonald, M., Mikulec, K., Little, D.G., 2008b. Modeling bone morphogenetic protein and bisphosphonate combination therapy in wild-type and Nf1 haploinsufficient mice. J. Orthop. Res. 26 (1), 65-74. Go to original source... Go to PubMed...
  25. Schindeler, A., Morse, A., Peacock, L., Mikulec, K., Yu, N.Y., Liu, R., et al., 2010. Rapid cell culture and pre-clinical screening of a transforming growth factor-beta (TGF-beta) inhibitor for orthopaedics. BMC Musculoskeletal Disord. 11, 105. Go to original source... Go to PubMed...
  26. Sharma, R., Wu, X., Rhodes, S.D., Chen, S., He, Y., Yuan, J., et al., 2013. Hyperactive Ras/ MAPK signalling is critical for tibial nonunion fracture in neurofibromindeficient mice. Hum. Mol. Genet. 22 (23), 4818-4828. Go to original source... Go to PubMed...
  27. Stevenson, D.A., Zhou, H., Ashrafi, S., Messiaen, L.M., Carey, J.C., D'Astous, J.L., et al., 2006. Double inactivation of NF1 in tibial pseudarthrosis. Am. J. Hum. Genet. 79 (1), 143-148. Go to original source... Go to PubMed...
  28. Stevenson, D.A., Moyer-Mileur, L.J., Murray, M., Slater, H., Sheng, X., Carey, J.C., et al., 2007. Bone mineral density in children and adolescents with neurofibromatosis type 1. J. Pediatr. 150 (1), 83-88. Go to original source... Go to PubMed...
  29. Stevenson, D.A., Little, D., Armstrong, L., Crawford, A.H., Eastwood, D., Friedman, J. M., et al., 2013. Approaches to treating NF1 tibial pseudarthrosis: consensus from the children's tumour foundation NF1 bone abnormalities consortium. J. Pediatr. Orthop. 33 (3), 269-275. Go to original source... Go to PubMed...
  30. Sullivan, K., El-Hoss, J., Little, D.G., Schindeler, A., 2011. JNK inhibitors increase osteogenesis in Nf1-deficient cells. Bone 49 (6), 1311-1316. Go to original source... Go to PubMed...
  31. Tournier, C., Hess, P., Yang, D.D., Xu, J., Turner, T.K., Nimnual, A., et al., 2000. Requirement of JNK for stress-induced activation of the cytochrome c-mediated death pathway. Science 288 (5467), 870-874. Go to original source... Go to PubMed...
  32. van der Velden, J.L., Ye, Y., Nolin, J.D., Hoffman, S.M., Chapman, D.G., Lahue, K.G., et al., 2016. JNK inhibition reduces lung remodelling and pulmonary fibrotic systemic markers. Clin. Transl. Med. 5 (1), 36. Go to original source... Go to PubMed...
  33. Wang, W., Nyman, J.S., Moss, H.E., Gutierrez, G., Mundy, G.R., Yang, X., Elefteriou, F., 2010. Local low-dose lovastatin delivery improves the bone-healing defect caused by Nf1 loss of function in osteoblasts. J. Bone Miner. Res. 25 (7), 1658- 1667. Go to original source... Go to PubMed...
  34. Wang, W., Nyman, J.S., Ono, K., Stevenson, D.A., Yang, X., Elefteriou, F., 2011. Mice lacking Nf1 in osteochondroprogenitor cells display skeletal dysplasia similar to patients with neurofibromatosis type I. Hum. Mol. Genet. 20 (20), 3910-3924. Go to original source... Go to PubMed...
  35. Zha, Y., Shah, R., Locke, F., Wong, A., Gajewski, T.F., 2008. Use of cre-adenovirus and CAR transgenic mice for efficient deletion of genes in post-thymic T cells. J. Immunol. Methods 331 (1-2), 94-102. Go to original source... Go to PubMed...
  36. Zhu, Y., Romero, M.I., Ghosh, P., Ye, Z., Charnay, P., Rushing, E.J., et al., 2001. Ablation of NF1 function in neurons induces abnormal development of cerebral cortex and reactive gliosis in the brain. Genes Dev. 15 (7), 859-876. Go to original source... Go to PubMed...