J Appl Biomed 17:75, 2019 | DOI: 10.32725/jab.2018.007

Deep stacked sparse auto-encoders for prediction of post-operative survival expectancy in thoracic lung cancer surgery

Mohammad Saber Iraji *
Payame Noor University, Faculty of Engineering, Department of Computer Engineering and Information Technology, Tehran, Iran

Lung cancer is the leading cause of cancer death in men and women. The prognostic value of survival after lung cancer surgery has an important role in decision-making for surgeons and patients. The combination of clinical features and CT scan information for diagnosis, treatment and survival of patients with lung cancer increases the accuracy of prediction using machine learning. Therefore, creating a computer intelligent method with low error and high accuracy to predict survival is an important challenge, and it is beneficial for decreasing mortality from lung cancer, and for planning treatment. In this work, we implemented a deep stacked sparse auto-encoder (DSSAE) approach on a thoracic surgery data set for 470 patients, and our results contributing to deep learning based on 16 features were more precise than other suggested techniques for predicting post-operative survival expectancy in thoracic lung cancer surgery. The proposed method achieved a sensitivity of 94%, specificity of 82.86% and g-mean of 88.25%.

Keywords: Deep stacked sparse auto-encoders (DSSAEs); Lung cancer; Neural networks; Thoracic surgery
Conflicts of interest:

The authors have no conflict of interests to declare.

Received: November 6, 2018; Accepted: December 3, 2018; Prepublished online: January 10, 2019; Published: March 19, 2019  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Saber Iraji M. Deep stacked sparse auto-encoders for prediction of post-operative survival expectancy in thoracic lung cancer surgery. J Appl Biomed. 2019;17(1):75. doi: 10.32725/jab.2018.007. PubMed PMID: 34907749.
Download citation

References

  1. Baldi P, Hornik K (1989). Neural networks and principal component analysis: Learning from examples without local minima. Neural networks 2(1): 53-58. DOI: 10.1016/0893-6080(89)90014-2. Go to original source...
  2. Bengio Y (2009). Learning deep architectures for AI. Foundations and trends® in Machine Learning 2(1): 1-127. DOI: 10.1561/2200000006. Go to original source...
  3. Carter JV, Pan J, Rai SN, Galandiuk S (2016). ROC-ing along: Evaluation and interpretation of receiver operating characteristic curves. Surgery 159(6): 1638-1645. DOI: 10.1016/j.surg.2015.12.029. Go to original source... Go to PubMed...
  4. Ciompi F, Chung K, van Riel SJ, Setio AAA, Gerke PK, Jacobs C, et al. (2017). Towards automatic pulmonary nodule management in lung cancer screening with deep learning. Sci Rep 7: 46479. DOI: 10.1038/srep46479. Go to original source... Go to PubMed...
  5. Ciompi F, de Hoop B, van Riel SJ, Chung K, Scholten ET, Oudkerk M, et al. (2015). Automatic classification of pulmonary peri-fissural nodules in computed tomography using an ensemble of 2D views and a convolutional neural network out-of-the-box. Med Image Anal 26(1): 195-202. DOI: 10.1016/j.media.2015.08.001. Go to original source... Go to PubMed...
  6. Cosma G, Brown D, Archer M, Khan M, Pockley AG (2017). A survey on computational intelligence approaches for predictive modeling in prostate cancer. Expert Syst Appl 70: 1-19. DOI: 10.1016/j.eswa.2016.11.006. Go to original source...
  7. Dobrowolski A, Suchocki M, Tomczykiewicz K, Majda-Zdancewicz E (2016). Classification of auditory brainstem response using wavelet decomposition and SVM network. Biocybern Biomed Eng 36(2): 427-436. DOI: 10.1016/j.bbe.2016.01.003. Go to original source...
  8. Dolatabadi AD, Khadem SEZ, Asl BM (2017). Automated diagnosis of coronary artery disease (CAD) patients using optimized SVM. Comput Methods Programs Biomed 138: 117-126. DOI: 10.1016/j.cmpb.2016.10.011. Go to original source... Go to PubMed...
  9. Er O, Tanrikulu AC, Abakay A, Temurtas F (2012). An approach based on probabilistic neural network for diagnosis of Mesothelioma's disease. Computers & Electrical Engineering 38(1): 75-81. DOI: 10.1016/j.compeleceng.2011.09.001. Go to original source...
  10. Feng G, Huang G-B, Lin Q, Gay R (2009). Error minimized extreme learning machine with growth of hidden nodes and incremental learning. IEEE Trans Neural Netw 20(8): 1352-1357. DOI: 10.1109/TNN.2009.2024147. Go to original source... Go to PubMed...
  11. Gargeya R, Leng T (2017). Automated Identification of Diabetic Retinopathy Using Deep Learning. Ophthalmology 124(7): 962-969. DOI: 10.1016/j.ophtha.2017.02.008. Go to original source... Go to PubMed...
  12. Geng D, Zhou W, Zhang Y, Geng S (2016). Epileptic seizure detection based on improved wavelet neural networks in long-term intracranial EEG. Biocybern Biomed Eng 36(2): 375-384. DOI: 10.1016/j.bbe.2016.03.001. Go to original source...
  13. Huang G-B, Zhu Q-Y, Siew C-K (2006). Extreme learning machine: theory and applications. Neurocomputing 70(1-3): 489-501. DOI: 10.1016/j.neucom.2005.12.126. Go to original source...
  14. In H, Palis E, Merkow RP, Posner MC, Ferguson MK, Winchester DP, Pezzi CM (2016). Doubling of 30-day mortality by 90 days after esophagectomy: a critical measure of outcomes for quality improvement. Ann Surg 263(2): 286-291. DOI: 10.1097/SLA.0000000000001215. Go to original source... Go to PubMed...
  15. Iraji MS (2017). Prediction of post-operative survival expectancy in thoracic lung cancer surgery with soft computing. J Appl Biomed 15(2): 151-159. DOI: 10.1016/j.jab.2016.12.001. Go to original source...
  16. Kuncheva LI (2004). Combining pattern classifiers: Methods and algorithms. John Wiley & Sons. Go to original source...
  17. Kramer MA (1991). Nonlinear principal component analysis using autoassociative neural networks. AIChE J 37(2): 233-243. DOI: 10.1002/aic.690370209. Go to original source...
  18. Kuan K, Ravaut M, Manek G, Chen H, Lin J, Nazir B, et al. (2017). Deep Learning for Lung Cancer Detection: Tackling the Kaggle Data Science Bowl 2017 Challenge. arXiv preprint arXiv:1705.09435.
  19. Kuo R, Cheng W, Lien W, Yang T (2015). A medical cost estimation with fuzzy neural network of acute hepatitis patients in emergency room. Comput Methods Programs Biomed 122(1): 40-46. DOI: 10.1016/j.cmpb.2015.06.006. Go to original source... Go to PubMed...
  20. Lu K, An X, Li J, He H (2017). Efficient deep network for vision-based object detection in robotic applications. Neurocomputing 245: 31-45. DOI: 10.1016/j.neucom.2017.03.050. Go to original source...
  21. Luo Y (2017). Recurrent Neural Networks for Classifying Relations in Clinical Notes. J Biomed Inform 72: 85-95. DOI: 10.1016/j.jbi.2017.07.006. Go to original source... Go to PubMed...
  22. Macías-García L, Luna-Romera JM, García-Gutierrez J, Martínez-Ballesteros M, Riquelme-Santos JC, González-Cámpora R (2017). A Study of the Suitability of Autoencoders for Preprocessing Data in Breast Cancer Experimentation. J Biomed Inform 72: 33-44. DOI: 10.1016/j.jbi.2017.06.020. Go to original source... Go to PubMed...
  23. Martinez AMC, Mallidi SH, Meyer BT (2017). On the relevance of auditory-based Gabor features for deep learning in robust speech recognition. Comput Speech Lang 45: 21-38. DOI: 10.1016/j.csl.2017.02.006. Go to original source...
  24. Möller A, Sartipy U (2012). Associations between changes in quality of life and survival after lung cancer surgery. J Thorac Oncol 7(1): 183-187. DOI: 10.1097/JTO.0b013e3182340abb. Go to original source... Go to PubMed...
  25. Oakden-Rayner L, Carneiro G, Bessen T, Nascimento JC, Bradley AP, Palmer LJ (2017). Precision Radiology: Predicting longevity using feature engineering and deep learning methods in a radiomics framework. Sci Rep 7(1): 1648. DOI: 10.1038/s41598-017-01931-w. Go to original source... Go to PubMed...
  26. Omiotek Z, Burda A, Wójcik W (2013). The use of decision tree induction and artificial neural networks for automatic diagnosis of Hashimoto's disease. Expert Syst Appl 40(16): 6684-6689. DOI: 10.1016/j.eswa.2013.03.022. Go to original source...
  27. Pham T, Tran T, Phung D, Venkatesh S (2017). Predicting healthcare trajectories from medical records: A deep learning approach. J Biomed Inform 69: 218-229. DOI: 10.1016/j.jbi.2017.04.001. Go to original source... Go to PubMed...
  28. Simonsen DF, Søgaard M, Bozi I, Horsburgh CR, Thomsen RW (2015). Risk factors for postoperative pneumonia after lung cancer surgery and impact of pneumonia on survival. Respir Med 109(10): 1340-1346. DOI: 10.1016/j.rmed.2015.07.008. Go to original source... Go to PubMed...
  29. Singh A, Tucker CS (2017). A machine learning approach to product review disambiguation based on function, form and behavior classification. Decis Support Syst 97: 81-91. DOI: 10.1016/j.dss.2017.03.007. Go to original source...
  30. Su S-Z, Liu Z-H, Xu S-P, Li S-Z, Ji R (2015). Sparse auto-encoder based feature learning for human body detection in depth image. Signal Process, 112: 43-52. DOI: 10.1016/j.sigpro.2014.11.003. Go to original source...
  31. Sun W, Zheng B, Qian W (2017). Automatic feature learning using multichannel ROI based on deep structured algorithms for computerized lung cancer diagnosis. Comput Biol Med 89: 530-539. DOI: 10.1016/j.compbiomed.2017.04.006. Go to original source... Go to PubMed...
  32. Tanvetyanon T, Finley DJ, Fabian T, Riquet M, Voltolini L, Kocaturk C, et al. (2015). Prognostic nomogram to predict survival after surgery for synchronous multiple lung cancers in multiple lobes. J Thorac Oncol 10(2): 338-345. DOI: 10.1097/JTO.0000000000000400. Go to original source... Go to PubMed...
  33. Temurtas H, Yumusak N, Temurtas F (2009). A comparative study on diabetes disease diagnosis using neural networks. Expert Syst Appl 36(4): 8610-8615. DOI: 10.1016/j.eswa.2008.10.032. Go to original source...
  34. Tian K, Shao M, Wang Y, Guan J, Zhou S (2016). Boosting compound-protein interaction prediction by deep learning. Methods 110: 64-72. DOI: 10.1016/j.ymeth.2016.06.024. Go to original source... Go to PubMed...
  35. van der Burgh HK, Schmidt R, Westeneng H-J, de Reu MA, van den Berg LH, van den Heuvel MP (2017). Deep learning predictions of survival based on MRI in amyotrophic lateral sclerosis. Neuroimage Clin 13: 361-369. DOI: 10.1016/j.nicl.2016.10.008. Go to original source... Go to PubMed...
  36. Wahab N, Khan A, Lee YS (2017). Two-phase deep convolutional neural network for reducing class skewness in histopathological images based breast cancer detection. Comput Biol Med 85: 86-97. DOI: 10.1016/j.compbiomed.2017.04.012. Go to original source... Go to PubMed...
  37. Wang H, Zhou Z, Li Y, Chen Z, Lu P, Wang W, et al. (2017). Comparison of machine learning methods for classifying mediastinal lymph node metastasis of non-small cell lung cancer from 18 F-FDG PET/CT images. EJNMMI Research 7: 11. DOI: 10.1186/s13550-017-0260-9. Go to original source... Go to PubMed...
  38. Yin XX, Zhang Y, Cao J, Wu JL, Hadjiloucas S (2016). Exploring the complementarity of THz pulse imaging and DCE-MRIs: Toward a unified multi-channel classification and a deep learningframework. Comput Methods Programs Biomed 137: 87-114. DOI: 10.1016/j.cmpb.2016.08.026. Go to original source... Go to PubMed...
  39. Yu KH, Zhang C, Berry GJ, Altman RB, Ré C, Rubin DL, Snyder M (2016). Predicting non-small cell lung cancer prognosis by fully automated microscopic pathology image features. Nat Commun 7: 12474. DOI: 10.1038/ncomms12474. Go to original source... Go to PubMed...
  40. Zhang Q, Xiao Y, Dai W, Suo J, Wang C, Shi J, Zheng H (2016a). Deep learning based classification of breast tumors with shear-wave elastography. Ultrasonics 72: 150-157. DOI: 10.1016/j.ultras.2016.08.004. Go to original source... Go to PubMed...
  41. Zhang Q, Yang LT, Liu X, Chen Z, Li P (2017). A tucker deep computation model for mobile multimedia feature learning. ACM TOMM 13(3): 39. DOI: 10.1145/3063593. Go to original source...
  42. Zhang Y, Zhang E, Chen W (2016b). Deep neural network for halftone image classification based on sparse auto-encoder. Eng Appl Artif Intell 50: 245-255. DOI: 10.1016/j.engappai.2016.01.032. Go to original source...
  43. Zhu X, Yao J, Huang J (2016a). Deep convolutional neural network for survival analysis with pathological images. In: Tian T, Jiang Q, Liu Y, Burrage K, Song J, Wang Y, et al. (Eds). 2016 IEEE International Conference on Bioinformatics and Biomedicine, pp. 544-547. DOI: 10.1109/BIBM.2016.7822579. Go to original source...
  44. Zhu Z, Wang X, Bai S, Yao C, Bai X (2016b). Deep learning representation using autoencoder for 3D shape retrieval. Neurocomputing 204: 41-50. DOI: 10.1016/j.neucom.2015.08.127. Go to original source...
  45. Ziêba M, Tomczak JM, Lubicz M, ¦wi±tek J (2014). Boosted SVM for extracting rules from imbalanced data in application to prediction of the post-operative life expectancy in the lung cancer patients. Appl Soft Comput 14: 99-108. DOI: 10.1016/j.asoc.2013.07.016. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.