J Appl Biomed 17:107-114, 2019 | DOI: 10.32725/jab.2019.008
Methylene blue elicits non-genotoxic H2O2 production and protects brain mitochondria from rotenone toxicity
- 1 Voronezh State University, Faculty of Medicine and Biology, Department of Genetics, Cytology and Bioengineering, Voronezh, Russia
- 2 Voronezh State University of Engineering Technologies, Voronezh, Russia
Methylene blue (MB) is a promising compound with a broad range of neuroprotective activity. One of therapeutic effects is the activation of mitochondrial biogenesis via Nrf2/ARE signaling cascade. Probably, mild oxidative stress caused by MB-depended H2O2 production is a trigger for activation of this signaling cascade. So mechanistically, MB can be regarded as prooxidant. We investigated the dose-dependent H2O2 production in intact brain mitochondria and showed the increase in the H2O2 production after adding as little as 50 nM MB. We have not found genotoxic effect of therapeutic concentration of MB to mitochondrial genome. 100 μM MB selectively damaged fragments of mitochondrial DNA, which correlated with the number of purine-T-G-purine (RTGR)-sequences in studied fragments. Furthermore, 20 μM MB combined with the red light caused the formation of singlet oxygen, which strongly damaged mitochondrial DNA in all studied fragments. We did not observe mitochondrial DNA lesions in brain after single intraperitoneal injection of MB in the concentration of 50 mg/kg. Furthermore, we showed the neuroprotective properties of MB pretreatments after rotenone injection. Therefore, we suggest that MB-induced mild oxidative stress does not have genotoxic effect on mitochondrial DNA.
Keywords: DNA damage; Methylene blue; mtDNA; Neuroprotection; Rotenone; Toxicity
Grants and funding:
This work was supported in part by the grant of the President of the Russian Federation for young scientists (Project MK3173.2019.11); Ministry of Education and Science of the Russian Federation (State Assessment N 6.4656.2017/8.9); Russian Fund for Basic Research (grant 19-44-360011 r_a).
Conflicts of interest:
The authors confirm that the study causes no conflict of interests as related to funding, commercial activity, intellectual property rights, or other conceivable issues.
Received: January 10, 2018; Accepted: May 14, 2019; Prepublished online: June 17, 2019; Published: June 28, 2019 Show citation
ACS | AIP | APA | ASA | Harvard | Chicago | Chicago Notes | IEEE | ISO690 | MLA | NLM | Turabian | Vancouver |
References
- Abdel-Salam O, Omara E, Youness E, Khadrawy Y, Mohammed N, Sleem A (2014). Rotenone-induced nigrostriatal toxicity is reduced by methylene blue. Journal of Neurorestoratology 2: 65-80. DOI: 10.2147/JN.S49207.
Go to original source...
- Atamna H, Atamna W, Al-Eyd G, Shanower G, Dhahbi JM (2015). Combined activation of the energy and cellular-defense pathways may explain the potent anti-senescence activity of methylene blue. Redox Bio 6: 426-435. DOI: 10.1016/j.redox.2015.09.004.
Go to original source...
Go to PubMed...
- Atamna H, Nguyen A, Schultz C, Boyle K, Newberry J, Kato H, Ames BN (2008). Methylene blue delays cellular senescence and enhances key mitochondrial biochemical pathways. FASEB J 22(3): 703-712. DOI: 10.1096/fj.07-9610com.
Go to original source...
Go to PubMed...
- Auerbach SS, Bristol DW, Peckham JC, Travlos GS, Hébert CD, Chhabra RS (2010). Toxicity and carcinogenicity studies of methylene blue trihydrate in F344N rats and B6C3F1 mice. Food Chem Toxicol 48(1): 169-177. DOI: 10.1016/j.fct.2009.09.034.
Go to original source...
Go to PubMed...
- Beµskaya LV, Kosenok VK, Massard G (2016). Endogenous intoxication and saliva lipid peroxidation in patients with lung cancer. Diagnostics (Basel) 6(4): 1-5. DOI: 10.3390/diagnostics6040039.
Go to original source...
Go to PubMed...
- Berling C (1970). [Appraisal of the delay of postoperative decurarization: remarks on the use of diallylnortoxiferine]. Agressologie 11(5): 449-469 (French).
Go to PubMed...
- Boveris A, Chance B (1973). The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen. Biochem J 134(3): 707-716. DOI: 10/1024/bj1340707.
Go to original source...
Go to PubMed...
- Bruchey AK, Gonzalez-Lima F (2008). Behavioral, physiological and biochemical hormetic responses to the autoxidizable dye methylene blue. Am J Pharmacol Toxicol 3(1): 72-79.
Go to original source...
Go to PubMed...
- Costa SR, Monteiro Mda C, da Silva Jśnior FM, Sandrini JZ (2016). Methylene blue toxicity in zebrafish cell line is dependent on light exposure. Cell Biol Int 40(8): 895-905. DOI: 10.1002/cbin.10629.
Go to original source...
Go to PubMed...
- Daudt DR 3rd, Mueller B, Park YH, Wen Y, Yorio T (2012). Methylene blue protects primary rat retinal ganglion cells from cellular senescence. Invest Ophthalmol Vis Sci 53(8): 4657-4667. DOI: 10.1167/iovs.12-9734.
Go to original source...
Go to PubMed...
- Erlank H, Elmann A, Kohen R, Kanner J (2011). Polyphenols activate Nrf2 in astrocytes via H2O2, semiquinones, and quinones. Free Radic Biol Med 51(12): 2319-2327. DOI: 10.1016/j.freeradbiomed.2011.09.033.
Go to original source...
Go to PubMed...
- Eroğlu L, Cağlayan B (1997). Anxiolytic and antidepressant properties of methylene blue in animal models. Pharmacol Res 36(5): 381-385. DOI: 10.1006/phrs.1997.0245.
Go to original source...
Go to PubMed...
- Grigolava IV, Ksenzenko MIu, Konstantinob AA, Tikhonov AN, Kerimov TM (1980). [Tiron as a spin-trap for superoxide radicals produced by the respiratory chain of submitochondrial particles]. Biokhimiia 45(1): 75-82 (Russian).
Go to PubMed...
- Guan J, Lai X, Wang X, Leung AW, Zhang H, Xu C (2014). Photodynamic action of methylene blue in osteosarcoma cells in vitro. Photodiagnosis Photodyn Ther 11(1): 13-19. DOI: 10.1016/j.ptpdt.2013.09.003.
Go to original source...
- Gureev AP, Shaforostova EA, Starkov AA, Popov VN (2017). Simplified qPCR method for detecting excessive mtDNA damage induced by exogenous factors. Toxicology 382: 67-74. DOI: 10.1016/j.tox.2017.03.010.
Go to original source...
Go to PubMed...
- Gureev AP, Syromyatnikov MY, Gorbacheva TM, Starkov AA, Popov VN (2016). Methylene blue improves sensorimotor phenotype and decreases anxiety in parallel with activating brain mitochondria biogenesis in mid-age mice. Neurosci Res 113: 19-27. DOI: 10.1016/j.neures.2016.07.006.
Go to original source...
Go to PubMed...
- Harman D (2009). Origin and evolution of the free radical theory of aging: a brief personal history, 1954-2009. Biogerontology 10(6): 773-781. DOI: 10.1007/s10522-009-9234-2.
Go to original source...
Go to PubMed...
- Henle ES, Han Z, Tang N, Rai P, Luo Y, Linn S (1999). Sequence-specific DNA cleavage by Fe2+-mediated fenton reactions has possible biological implications. J Biol Chem 274(2): 962-971. DOI: 10.1074/jbc.274.2.962.
Go to original source...
Go to PubMed...
- Hill RL, Kulbe JR, Singh IN, Wang JA, Hall ED (2018). Synaptic mitochondria are more susceptible to traumatic brain injury-induced oxidative damage and respiratory dysfunction than non-synaptic mitochondria. Neuroscience 386: 265-283. DOI: 10.1016/j.neuroscience.2018.06.028.
Go to original source...
Go to PubMed...
- Kristian T (2010). Isolation of mitochondria from the CNS. Curr Protoc Neurosci 52(1): 7.22.1-7.22.12. DOI: 10.1002/0471142301.ns0722s52.
Go to original source...
Go to PubMed...
- Kudin AP, Bimpong-Buta NY, Vielhaber S, Elger CE, Kunz WS (2004). Characterization of superoxide-producing sites in isolated brain mitochondria. J Biol Chem 279(6): 4127-4135. DOI: 10.1074/jbc.M310341200.
Go to original source...
Go to PubMed...
- Kushnareva Y, Murphy AN, Andreyev A (2002). Complex I-mediated reactive oxygen species generation: modulation by cytochrome c and NAD (P) u oxidation- reduction state. Biochem J 368(Pt 2): 545-553. DOI: 10.1042/bj20021121.
Go to original source...
Go to PubMed...
- Lores-Arnaiz S, Lombardi P, Karadayian AG, Orgambide F, Cicerchia D, Bustamante J (2016). Brain cortex mitochondrial bioenergetics in synaptosomes and non-synaptic mitochondria during aging. Neurochem Res 41(1-2): 353-363. DOI: 10.1007/s11064-015-1817-5.
Go to original source...
Go to PubMed...
- Oliveira CS, Turchiello R, Kowaltowski AJ, Indig GL, Baptista MS (2011). Major determinants of photoinduced cell death: Subcellular localization versus photosensitization efficiency. Free Radic Biol Med 51(4): 824-833. DOI: 10.1016/j.freeradbiomed.2011.05.023.
Go to original source...
Go to PubMed...
- Oz M, Lorke DE, Hasan M, Petroianu GA (2011). Cellular and molecular actions of Methylene Blue in the nervous system. Med Res Rev 31(1): 93-117. DOI: 10.1002/med.20177.
Go to original source...
Go to PubMed...
- Peter C, Hongwan D, Küpfer A, Lauterburg BH (2000). Pharmacokinetics and organ distribution of intravenous and oral methylene blue. Eur J Clin Pharmacol 56(3): 247-250.
Go to original source...
Go to PubMed...
- Piantadosi CA, Carraway MS, Babiker A, Suliman HB (2008). Heme oxygenase-1 regulates cardiac mitochondrial biogenesis via Nrf2-mediated transcriptional control of nuclear respiratory factor-1. Circ Res 103(11): 1232-1240. DOI: 10.1161/01.RES.0000338597.71702.ad.
Go to original source...
Go to PubMed...
- Pohjoismäki JL, Goffart S (2011). Of circles, forks and humanity: Topological organisation and replication of mammalian mitochondrial DNA. Bioessays 33(4): 290-299. DOI: 10.1002/bies.201000137.
Go to original source...
Go to PubMed...
- Poteet E, Winters A, Yan LJ, Shufelt K, Green KN, Simpkins JW, et al. (2012). Neuroprotective actions of methylene blue and its derivatives. PLoS One 7(10): e48279. DOI: 10.1371/journal.pone.0048279.
Go to original source...
Go to PubMed...
- Radak Z, Chung HY, Goto S (2005). Exercise and hormesis: oxidative stress-related adaptation for successful aging. Biogerontology 6(1): 71-75. DOI: 10.1007/s10522-004-7386-7.
Go to original source...
Go to PubMed...
- Riha PD, Bruchey AK, Echevarria DJ, Gonzalez-Lima F (2005). Memory facilitation by methylene blue: dose-dependent effect on behavior and brain oxygen consumption. Eur J Pharmacol 511(2-3): 151-158. DOI: 10.1016/j.ejphar.2005.02.001.
Go to original source...
Go to PubMed...
- Ristow M, Zarse K (2010). How increased oxidative stress promotes longevity and metabolic health: The concept of mitochondrial hormesis (mitohormesis). Exp Gerontol 45(6): 410-418. DOI: 10.1016/j.exger.2010.03.014.
Go to original source...
Go to PubMed...
- Rojas JC, Bruchey AK, Gonzalez-Lima F (2012). Neurometabolic mechanisms for memory enhancement and neuroprotection of methylene blue. Prog Neurobiol 96(1): 32-45. DOI: 10.1016/j.pneurobio.2011.10.007.
Go to original source...
Go to PubMed...
- Rojas JC, John JM, Lee J, Gonzalez-Lima F (2009). Methylene blue provides behavioral and metabolic neuroprotection against optic neuropathy. Neurotox Res 15(3): 260-273. DOI: 10.1007/s12640-009-9027-z.
Go to original source...
Go to PubMed...
- Salaris SC, Babbs CF, Voorhees WD 3rd (1991). Methylene blue as an inhibitor of superoxide generation by xanthine oxidase. A potential new drug for the attenuation of ischemia/reperfusion injury. Biochem Pharmacol 42(3): 499-506. DOI: 10.1016/0006-2952(91)90311-R.
Go to original source...
Go to PubMed...
- Sanders LH, McCoy J, Hu X, Mastroberardino PG, Dickinson BC, Chang CJ, et al. (2014). Mitochondrial DNA damage: molecular marker of vulnerable nigral neurons in Parkinson's disease. Neurobiol Dis 70: 214-223. DOI: 10.1016/j.nbd.2014.06.014.
Go to original source...
Go to PubMed...
- Schirmer RH, Adler H, Pickhardt M, Mandelkow E (2011). "Lest we forget you - methylene blue..." Neurobiol Aging 32(12): 2325.e7-2325.e16. DOI: 10.1016/j.neurobiolaging.2010.12.012.
Go to original source...
Go to PubMed...
- Stack C, Jainuddin S, Elipenahli C, Gerges M, Starkova N, Starkov AA, et al. (2014). Methylene blue upregulates Nrf2/ARE genes and prevents tau-related neurotoxicity. Hum Mol Genet 23(14): 3716-3732. DOI: 10.1093/hmg/ddu080.
Go to original source...
Go to PubMed...
- Starkov AA (2010). Measurement of mitochondrial ROS production. Methods Mol Biol 648: 245-255. DOI: 10.1007/978-1-60761-756-3_16.
Go to original source...
Go to PubMed...
- SunY, Zhang D, Liu X, Li X, Liu F, Yu Y, et al. (2018). Endoplasmic reticulum stress affects lipid metabolism in atherosclerosis via chop activation and over-expression of miR-33. Cell Physiol Biochem 48(5): 1995-2010. DOI: 10.1159/000492522.
Go to original source...
Go to PubMed...
- Tretter L, Horvath G, Hölgyesi A, Essek F, Adam-Vizi V (2014). Enhanced hydrogen peroxide generation accompanies the beneficial bioenergetic effects of methylene blue in isolated brain mitochondria. Free Radic Biol Med 77: 317-330. DOI: 10.1016/j.freeradbiomed.2014.09.024.
Go to original source...
Go to PubMed...
- Vekaria HJ, Talley Watts L, Lin A.L, Sullivan PG (2017). Targeting mitochondrial dysfunction in CNS injury using Methylene Blue;still a magic bullet. Neurochem Int 109: 117-125. DOI: 10.1016/j.neuint.2017.04.004.
Go to original source...
Go to PubMed...
- Visarius TM, Stucki JW, Lauterburg BH (1997). Stimulation of respiration by methylene blue in rat liver mitochondria. FEBS Lett 412(1): 157-160. DOI: 10.1016/S0014-5793(97)00767-9.
Go to original source...
Go to PubMed...
- Vutskits L, Briner A, Klauser P, Gascon E, Dayer AG, Kiss JZ, et al. (2008). Adverse effects of methylene blue on the central nervous system. Anesthesiology 108(4): 684-692. DOI: 10.1097/ALN.0b013e3181684be4.
Go to original source...
Go to PubMed...
- Wen Y, Li W, Poteet EC, Xie L, Tan C, Yan LJ, et al. (2011). Alternative mitochondrial electron transfer as a novel strategyfor neuroprotection. J Biol Chem 286(18): 16504-16515. DOI: 10.1074/jbc.M110.208447.
Go to original source...
Go to PubMed...
- Yakes FM, Van Houten B (1997). Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress. Proc Natl Acad Sci U S A 94(2): 514-519. DOI: 10.1073/pnas.94.2.514.
Go to original source...
Go to PubMed...
- Zhang X, Rojas JC, Gonzalez-Lima F (2006). Methylene blue prevents neurodegeneration caused by rotenone in the retina. Neurotox Res 9(1): 47-57.
Go to original source...
Go to PubMed...
This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.