J Appl Biomed 17:167-174, 2019 | DOI: 10.32725/jab.2019.015

Prediction of semen quality using artificial neural network

Anna Badura1,*, Urszula Marzec-Wróblewska1, Piotr Kamiński2,3, Paweł Łakota4,5, Grzegorz Ludwikowski6, Marek Szymański7,8, Karolina Wasilow8,9, Andżelika Lorenc1, Adam Buciński1
1 Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Faculty of Pharmacy, Department of Biopharmacy, Bydgoszcz, Poland
2 Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Faculty of Medicine, Department of Medical Biology and Biochemistry, Department of Ecology and Environmental Protection, Bydgoszcz, Poland
3 University of Zielona Góra, Faculty of Biological Sciences, Department of Biotechnology, Zielona Góra, Poland
4 University of Technology and Life Sciences, Faculty of Animal Biology, Department of Animal Biotechnology, Bydgoszcz, Poland
5 MAS, Poznań, Poland
6 Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Faculty of Health Sciences, Department of Obstetrics, Bydgoszcz, Poland
7 Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Faculty of Medicine, University Hospital No. 2, Department of Obstetrics, Female Pathology and Oncological Gynecology, Bydgoszcz, Poland
8 NZOZ Medical Center Genesis Infertility Treatment Clinic, Bydgoszcz, Poland
9 Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Faculty of Medicine, University Hospital No. 2, Family Medicine Clinic, Bydgoszcz, Poland

Examination of semen characteristics is routinely performed for fertility status investigation of the male partner of an infertile couple as well as for evaluation of the sperm donor candidate. A useful tool for preliminary assessment of semen characteristics might be an artificial neural network. Thus, the aim of the present study was to construct an artificial neural network, which could be used for predicting the result of semen analysis based on the basic questionnaire data. On the basis of eleven survey questions two models of artificial neural networks to predict semen parameters were developed. The first model aims to predict the overall performance and profile of semen. The second network was developed to predict the concentration of sperm. The network to evaluate sperm concentration proved to be the most efficient. 92.93% of the patients in the learning process were properly qualified for the group with a correct or incorrect result, while the result for the test set was 85.71%. This study suggests that an artificial neural network based on eleven survey questions might be a valuable tool for preliminary evaluation and prediction of the semen profile.

Keywords: Artificial neural network; Concentration; Semen analysis; Semen characteristics; Spermatozoa
Conflicts of interest:

The authors have no conflict of interests to declare.

Received: December 11, 2018; Accepted: September 5, 2019; Prepublished online: September 17, 2019; Published: September 18, 2019  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Badura A, Marzec-Wróblewska U, Kamiński P, Łakota P, Ludwikowski G, Szymański M, et al.. Prediction of semen quality using artificial neural network. J Appl Biomed. 2019;17(3):167-174. doi: 10.32725/jab.2019.015. PubMed PMID: 34907698.
Download citation

References

  1. Ansari D, Nilsson J, Andersson R, Regnér S, Tingstedt B, Andersson B (2013). Artificial neural networks predict survival from pancreatic cancer after radical surgery. Am J Surg 205(1): 1-7. DOI: 10.1016/j.amjsurg.2012.05.032. Go to original source... Go to PubMed...
  2. Bhardwaj A, Tiwari A (2015). Breast cancer diagnosis using genetically optimized neural network model. Expert Syst Appl 42(10): 4611-4620. DOI: 10.1016/j.eswa.2015.01.065. Go to original source...
  3. Böhlandt A, Schierl R, Diemer J, Koch C, Bolte G, Kiranoglu M, et al. (2012). High concentrations of cadmium, cerium and lanthanum in indoor air due to environmental tobacco smoke. Sci Total Environ 414: 738-741. DOI: 10.1016/j.scitotenv.2011.11.017. Go to original source... Go to PubMed...
  4. Buciński A, Baczek T, Kaliszan R, Nasal A, Krysiński J, Załuski J (2005). Artificial neural network analysis of patient and treatment variables as a prognostic tool in breast cancer after mastectomy. Adv Clin Exp Med 14(5): 973-979.
  5. Buciński A, Wnuk M, Goryński K, Giza A, Kochańczyk J, Nowaczyk A, et al. (2009). Artificial neural networks analysis used to evaluate the molecular interactions between selected drugs and human α1-acid glycoprotein. J Pharm Biomed Anal 50(4): 591-596. DOI: 10.1016/j.jpba.2008.11.005. Go to original source... Go to PubMed...
  6. Buscema M (2002). A brief overview and introduction to artificial neural networks. Subst Use Misuse 37(8-10): 1093-1148. DOI: 10.1081/JA-120004171. Go to original source... Go to PubMed...
  7. Cooper TG, Noonan E, Von Eckardstein S, Auger J, Baker HW, Behre HM, et al. (2010). World Health Organization reference values for human semen characteristics. Hum Reprod Update 16(3): 231-245. DOI: 10.1093/humupd/dmp048. Go to original source... Go to PubMed...
  8. Dirks-Naylor AJ (2015). The benefits of coffee on skeletal muscle. Life Sci 143: 182-186. DOI: 10.1016/j.lfs.2015.11.005. Go to original source... Go to PubMed...
  9. Garrido N, Zuzuarregui J, Meseguer M, Simon C, Remohi J, Pellicer A (2002). Sperm and oocyte donor selection and management: Experience of a 10 year follow-up of more than 2100 candidates. Hum Reprod 17: 3142-3148. DOI: 10.1093/humrep/17.12.3142. Go to original source... Go to PubMed...
  10. Gil D, Girela JL, De Juan J, Gomez-Torres MJ, Johnsson M (2012). Predicting seminal quality with artificial intelligence methods. Expert Syst Appl 39(16): 12564-12573. DOI: 10.1016/j.eswa.2012.05.028. Go to original source...
  11. Girela JL, Gil D, Johnsson M, Gomez-Torres MJ, De Juan J (2013). Semen parameters can be predicted from environmental factors and lifestyle using artificial intelligence methods. Biol Reprod 88(4): 1-8. DOI: 10.1095/biolreprod.112.104653. Go to original source... Go to PubMed...
  12. Goryński K, Safian I, Gradzki W, Marszałł MP, Krysiński J, Goryński S, et al. (2014). Artificial neural networks approach to early lung cancer detection. Cent Eur J Med 9: 632-641. DOI: 10.2478/s11536-013-0327-6. Go to original source...
  13. Grioni S, Agnoli C, Sieri S, Pala V, Ricceri F, Masala G, et al. (2015). Espresso coffee consumption and risk of coronary heart disease in a large italian cohort. PLoS One 10(5): e0126550. DOI: 10.1371/journal.pone.0126550. Go to original source... Go to PubMed...
  14. Iraji MS (2019a). Combining predictors for multi-layer architecture of adaptive fuzzy inference system. Cogn Syst Res 53: 71-84. DOI: 10.1016/j.cogsys.2018.05.005. Go to original source...
  15. Iraji MS (2019b). Prediction of fetal state from the cardiotocogram recordings using neural network models. Artif Intell Med 96: 33-44. DOI: 10.1016/j.artmed.2019.03.005. Go to original source... Go to PubMed...
  16. Jensen TK, Swan SH, Skakkebæk NE, Rasmussen S, Jørgensen N (2010). Caffeine intake and semen quality in a population of 2,554 young danish men. Am J Epidemiol 171(8): 883-891. DOI: 10.1093/aje/kwq007. Go to original source... Go to PubMed...
  17. Jurewicz J, Radwan M, Sobala W, Ligocka D, Radwan P, Bochenek M, Hanke W (2014a). Lifestyle and semen quality: Role of modifiable risk factors. Syst Biol Reprod Med 60(1): 43-51. DOI: 10.3109/19396368.2013.840687. Go to original source... Go to PubMed...
  18. Jurewicz J, Radwan M, Sobala W, Radwan P, Bochenek M, Hanke W (2014b). Effects of occupational exposure - is there a link between exposure based on an occupational questionnaire and semen quality? Syst Biol Reprod Med 60(4): 227-233. DOI: 10.3109/19396368.2014.907837. Go to original source... Go to PubMed...
  19. Knyazev AV, Lashuk I (2007). Steepest descent and conjugate gradient methods with variable preconditioning. SIAM J Matrix Anal Appl 29(4): 1267-1280. DOI: 10.1137/060675290. Go to original source...
  20. Lalos A, Lalos O, Jacobsson L, Von Schoultz B (1985). Psychological reactions to the medical investigation and surgical treatment of infertility. Gynecol Obstet Invest 20(4): 209-217. DOI: 10.1159/000298996. Go to original source... Go to PubMed...
  21. Luenberger DG, Ye Y (2008). Linear and nonlinear programming, 3rd ed. New York: Springer Science+Business Media, LLC. Go to original source...
  22. Ma Y, Chen B, Wang HX, Hu K, Huang YR (2011). Prediction of sperm retrieval in men with non-obstructive azoospermia using artificial neural networks: Leptin is a good assistant diagnostic marker. Hum Reprod 26(2): 294-298. DOI: 10.1093/humrep/deq337. Go to original source... Go to PubMed...
  23. Martini AC, Molina RI, Estofan D, Senestrari D, Fiol De Cuneo M, Ruiz RD (2004). Effects of alcohol and cigarette consumption on human seminal quality. Fertil Steril 82(2): 374-377. DOI: 10.1016/j.fertnstert.2004.03.022. Go to original source... Go to PubMed...
  24. Marzec-Wróblewska U, Kamiński P, Łakota P, Ludwikowski G, Szymański M, Wasilow K, et al. (2015a). Determination ofrare earth elements in human sperm and association with semen quality. Arch Environ Contam Toxicol 69(2): 191-201. DOI: 10.1007/s00244-015-0143-x. Go to original source... Go to PubMed...
  25. Marzec-Wróblewska U, Kamiński P, Łakota P, Szymański M, Wasilow K, Ludwikowski G, et al. (2015b). The employment of IVF techniques for establishment of sodium, copper and selenium, impact upon human sperm quality. Reprod Fert Develop 28(10): 1518-1525. DOI: 10.1071/Rd15041. Go to original source... Go to PubMed...
  26. Marzec-Wróblewska U, Kamiński P, Łakota P, Szymański M, Wasilow K, Ludwikowski G, et al. (2011). Zinc and iron concentration and SOD activity in human semen and seminal plasma. Biol Trace Elem Res 143(1): 167-177. DOI: 10.1007/s12011-010-8868-x. Go to original source... Go to PubMed...
  27. Mekruksavanich S (2016). A prediction model for influenza epidemics using artificial neural networks. Far East J Electron Commun 16(1): 131-146. DOI: 10.17654/EC016010131. Go to original source...
  28. Milardi D, Grande G, Sacchini D, Astorri AL, Pompa G, Giampietro A, et al. (2012). Male fertility and reduction in semen parameters: A single tertiary-care center experience. Int J Endocrinol 2012: 649149. DOI: 10.1155/2012/649149. Go to original source... Go to PubMed...
  29. Office on Smoking and Helath (US) (2006). The health consequences of involuntary exposure to tobacco smoke: A report of the surgeon general. Atlanta, GA: US Department of Health and Human Services, Centers for Disease Control and Prevention. [online] [cit. 2019-06-24]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK44324/
  30. Pant N, Kumar G, Upadhyay A, Gupta Y, Chaturvedi P (2015). Correlation between lead and cadmium concentration and semen quality. Andrologia 47(8): 887-891. DOI: 10.1111/and.12342. Go to original source... Go to PubMed...
  31. Sahoo AJ, Kumar Y (2014). Seminal quality prediction using data mining methods. Technol Health Care 22(4): 531-545. DOI: 10.3233/THC-140816. Go to original source... Go to PubMed...
  32. Samli MM, Dogan I (2004). An artificial neural network for predicting the presence of spermatozoa in the testes of men with nonobstructive azoospermia. J Urol 171(6 Pt 1): 2354-2357. DOI: 10.1097/01.ju.0000125272.03182.c3. Go to original source... Go to PubMed...
  33. Saritas I, Ozkan IA, Sert IU (2010). Prognosis of prostate cancer by artificial neural networks. Expert Syst Appl 37(9): 6646-6650. DOI: 10.1016/j.eswa.2010.03.056. Go to original source...
  34. Sharma R, Biedenharn KR, Fedor JM, Agarwal A (2013). Lifestyle factors and reproductive health: Taking control of your fertility. Reprod Biol Endocrinol 11: 66. DOI: 10.1186%2F1477-7827-11-66. Go to original source... Go to PubMed...
  35. Siristatidis C, Pouliakis A, Chrelias C, Kassanos D (2011). Artificial intelligence in IVF: A need. Syst Biol Reprod Med 57(4): 179-185. DOI: 10.3109/19396368.2011.558607. Go to original source... Go to PubMed...
  36. Slezakova K, Pereira M, Alvim-Ferraz M (2009). Influence of tobacco smoke on the elemental composition of indoor particles of different sizes. Atmos Environ 43(3): 486-493. DOI: 10.1016/j.atmosenv.2008.10.017. Go to original source...
  37. Spelt L, Nilsson J, Andersson R, Andersson B (2013). Artificial neural networks - a method for prediction of survival following liver resection for colorectal cancer metastases. Europ J Surg Oncol 39(6): 648-654. DOI: 10.1016/j.ejso.2013.02.024. Go to original source... Go to PubMed...
  38. Swan SH, Brazil C, Drobnis EZ, Liu F, Kruse RL, Hatch M, et al. (2003). Geographic differences in semen quality of fertile U.S. males. Environ Health Perspect 111(4): 414-420. DOI: 10.1289/ehp.5927. Go to original source... Go to PubMed...
  39. Vickram AS, Kamini AR, Das R, Pathy MR, Parameswari R, Archana K, Sridharan TB (2016). Validation of artificial neural network models for predicting biochemical markers associated with male infertility. Syst Biol Reprod Med 62(4): 258-265. DOI: 10.1080/19396368.2016.1185654. Go to original source... Go to PubMed...
  40. Vickram AS, Raja D, Srinivas MS, Kamini AR, Jayaraman G, Sridharan TB (2013). Prediction of Zn concentration in human seminal plasma of normospermia samples by artificial neural networks (ANN). J Assist Reprod Genet 30(4): 453-459. DOI: 10.1007/s10815-012-9926-4. Go to original source... Go to PubMed...
  41. Wang B, Dong F, Chen S, Chen M, Bai Y, Tan J, et al. (2016). Phenolic endocrine disrupting chemicals in an urban receiving river (Panlong river) of Yunnan-Guizhou plateau: Occurrence, bioaccumulation and sources. Ecotoxicol Environ Saf 128: 133-142. DOI: 10.1016/j.ecoenv.2016.02.018. Go to original source... Go to PubMed...
  42. WHO (2010). Who laboratory manual for examination and processing of human semen, 5th ed. Geneva: WHO Press.
  43. WHO, International Agency for Research on Cancer (2009). Tobacco smoke and involuntary smoking. IARC monographs on the evaluation of carcinogenic risks to humans, No. 83. Lyon: International Agency for Research on Cancer.
  44. Wnuk M, Marszałł M, Zapęcka A, Nowaczyk A, Krysiński J, Romaszko J, et al. (2013). Prediction of antimicrobial activity of imidazole derivatives by artificial neural networks. Cent Eur J Med 8(1): 1-15. DOI: 10.2478/s11536-012-0052-6. Go to original source...
  45. Yang H, Chen Q, Zhou N, Sun L, Bao H, Tan L, et al. (2015). Lifestyles associated with human semen quality: Results from marhcs cohort study in Chongqing, China. Medicine (Baltimore) 94(28): e1166. DOI: 10.1097%2FMD.0000000000001166. Go to original source... Go to PubMed...
  46. Zhou N, Cui Z, Yang S, Han X, Chen G, Zhou Z, et al. (2014). Air pollution and decreased semen quality: A comparative study of Chongqing urban and rural areas. Environ Pollut 187: 145-152. DOI: 10.1016/j.envpol.2013.12.030. Go to original source... Go to PubMed...
  47. Zou J, Han Y, So SS (2008). Overview of artificial neural networks. In: Livingstone DJ (Ed.). Artificial Neural Networks. Methods Mol Biol 485: 15-23. DOI: 10/1007/978-1-60327-101-1. Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.