J Appl Biomed 17:209-217, 2019 | DOI: 10.32725/jab.2019.018
The frequency and consequences of multipolar mitoses in undifferentiated embryonic stem cells
- 1 Masaryk University, Faculty of Medicine, Department of Histology and Embryology, Brno, Czech Republic
- 2 Masaryk University, CEITEC - Central European Institute of Technology, Cellular Imaging Core Facility, Brno, Czech Republic
- 3 St. Anne's University Hospital, International Clinical Research Center, Brno, Czech Republic
- 4 Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
- 5 Pasteur Institute, Image Analysis Hub, Paris, France
Embryonic stem (ES) cells are pluripotent cells widely used in cell therapy and tissue engineering. However, the broader clinical applications of ES cells are limited by their genomic instability and karyotypic abnormalities. Thus, understanding the mechanisms underlying ES cell karyotypic abnormalities is critical to optimizing their clinical use. In this study, we focused on proliferating human and mouse ES cells undergoing multipolar divisions. Specifically, we analyzed the frequency and outcomes of such divisions using a combination of time-lapse microscopy and cell tracking. This revealed that cells resulting from multipolar divisions were not only viable, but they also frequently underwent subsequent cell divisions. Our novel data also showed that in human and mouse ES cells, multipolar spindles allowed more robust escape from chromosome segregation control mechanisms than bipolar spindles. Considering the frequency of multipolar divisions in proliferating ES cells, it is conceivable that cell division errors underlie ES cell karyotypic instability.
Keywords: Embryonic stem (ES) cells; Mitosis length; Multipolar division; Single-cell tracking; Spindle assembly checkpoint (SAC); Time-lapse microscopy
Grants and funding:
This work was supported by Czech Science Foundation projects 15-11707S and 15-04844S and the European Regional Development Fund-Project “National infrastructure for biological and medical imaging” (No. CZ.02.1.01/0.0/0.0/16_013/000 1775). We thank Drs. Anthony Hyman and Ina Poser (MPICBG, Dresden, Germany) for providing the H2A-GFP BAC construct, Dr. Ronald Naumann (MPI-CBG, Dresden, Germany) for providing the JM8.A mouse ES cells, and Dr. Klara Koudelkova for her excellent technical assistance.
Conflicts of interest:
The authors declare no conflict of interests.
Received: May 31, 2019; Revised: October 4, 2019; Accepted: October 22, 2019; Prepublished online: November 11, 2019; Published: December 13, 2019 Show citation
ACS | AIP | APA | ASA | Harvard | Chicago | Chicago Notes | IEEE | ISO690 | MLA | NLM | Turabian | Vancouver |
References
- Ballabeni A, Park IH, Zhao R, Wang W, Lerou PH, Daley GQ, Kirschner MW (2011). Cell cycle adaptations of embryonic stem cells. Proc Natl Acad Sci U S A 108(48): 19252-19257. DOI: 10.1073/pnas.1116794108.
Go to original source...
Go to PubMed...
- Brinkley BR (2001). Managing the centrosome numbers game: from chaos to stability in cancer cell division. Trends Cell Biol 11(1): 18-21. DOI: 10.1016/s0962-8924(00)01872-9.
Go to original source...
Go to PubMed...
- Castedo M, Perfettini JL, Roumier T, Valent A, Raslova H, Yakushijin K, et al. (2004). Mitotic catastrophe constitutes a special case of apoptosis whose suppression entails aneuploidy. Oncogene 23(25): 4362-4370. DOI: 10.1038/sj.onc.1207572.
Go to original source...
Go to PubMed...
- Celton-Morizur S, Merlen G, Couton D, Margall-Ducos G, Desdouets C (2009). The insulin/Akt pathway controls a specific cell division program that leads to generation of binucleated tetraploid liver cells in rodents. J Clin Invest 119(7): 1880-1887. DOI: 10.1172/jci38677.
Go to original source...
Go to PubMed...
- Chen J, Liu J (2015). Erroneous silencing of the mitotic checkpoint by aberrant spindle pole-kinetochore coordination. Biophys J 109(11): 2418-2435. DOI: 10.1016/j.bpj.2015.10.024.
Go to original source...
Go to PubMed...
- Draper JS, Smith K, Gokhale P, Moore HD, Maltby E, Johnson J, et al. (2004). Recurrent gain of chromosomes 17q and 12 in cultured human embryonic stem cells. Nat Biotechnol 22(1): 53-54. DOI: 10.1038/nbt922.
Go to original source...
Go to PubMed...
- Duncan AW, Taylor MH, Hickey RD, Hanlon Newell AE, Lenzi ML, Olson SB, et al. (2010). The ploidy conveyor of mature hepatocytes as a source of genetic variation. Nature 467(7316): 707-710. DOI: 10.1038/nature09414.
Go to original source...
Go to PubMed...
- Durrbaum M, Storchova Z (2016). Effects of aneuploidy on gene expression: implications for cancer. FEBS J 283(5): 791-802. DOI: 10.1111/febs.13591.
Go to original source...
Go to PubMed...
- Foley EA, Kapoor TM (2013). Microtubule attachment and spindle assembly checkpoint signalling at the kinetochore. Nat Rev Mol Cell Biol 14(1): 25-37. DOI: 10.1038/nrm3494.
Go to original source...
Go to PubMed...
- Galimberti F, Thompson SL, Ravi S, Compton DA, Dmitrovsky E (2011). Anaphase catastrophe is a target for cancer therapy. Clin Cancer Res 17(6): 1218-1222. DOI: 10.1158/1078-0432.CCR-10-1178.
Go to original source...
Go to PubMed...
- Ganem NJ, Cornils H, Chiu SY, O'Rourke KP, Arnaud J, Yimlamai D, et al. (2014). Cytokinesis failure triggers hippo tumor suppressor pathway activation. Cell 158(4): 833-848. DOI: 10.1016/j.cell.2014.06.029.
Go to original source...
Go to PubMed...
- Ganem NJ, Godinho SA, Pellman D (2009). A mechanism linking extra centrosomes to chromosomal instability. Nature 460(7252): 278-282. DOI: 10.1038/nature08136.
Go to original source...
Go to PubMed...
- Gentric G, Desdouets C (2014). Polyploidization in liver tissue. Am J Pathol 184(2): 322-331. DOI: 10.1016/j.ajpath.2013.06.035.
Go to original source...
Go to PubMed...
- Gisselsson D, Jin Y, Lindgren D, Persson J, Gisselsson L, Hanks S, et al. (2010). Generation of trisomies in cancer cells by multipolar mitosis and incomplete cytokinesis. Proc Natl Acad Sci U S A 107(47): 20489-20493. DOI: 10.1073/pnas.1006829107.
Go to original source...
Go to PubMed...
- Holubcova Z, Blayney M, Elder K, Schuh M (2015). Human oocytes. Error-prone chromosome-mediated spindle assembly favors chromosome segregation defects in human oocytes. Science 348(6239): 1143-1147. DOI: 10.1126/science.aaa9529.
Go to original source...
Go to PubMed...
- Holubcova Z, Matula P, Sedlackova M, Vinarsky V, Dolezalova D, Barta T, et al. (2011). Human embryonic stem cells suffer from centrosomal amplification. Stem Cells 29(1): 46-56. DOI: 10.1002/stem.549.
Go to original source...
Go to PubMed...
- Imreh MP, Gertow K, Cedervall J, Unger C, Holmberg K, Szoke K, et al. (2006). In vitro culture conditions favoring selection of chromosomal abnormalities in human ES cells. J Cell Biochem 99(2): 508-516. DOI: 10.1002/jcb.20897.
Go to original source...
Go to PubMed...
- International Stem Cell Initiative, Amps K, Andrews PW, Anyfantis G, Armstrong L, Avery S, et al. (2011). Screening ethnically diverse human embryonic stem cells identifies a chromosome 20 minimal amplicon conferring growth advantage. Nat Biotechnol 29(12): 1132-1144. DOI: 10.1038/nbt.2051.
Go to original source...
Go to PubMed...
- Kallas A, Pook M, Maimets M, Zimmermann K, Maimets T (2011). Nocodazole treatment decreases expression of pluripotency markers Nanog and Oct4 in human embryonic stem cells. PloS One 6(4): e19114. DOI: 10.1371/journal.pone.0019114.
Go to original source...
Go to PubMed...
- Kwon M, Godinho SA, Chandhok NS, Ganem NJ, Azioune A, Thery M, Pellman D (2008). Mechanisms to suppress multipolar divisions in cancer cells with extra centrosomes. Genes Dev 22(16): 2189-2203. DOI: 10.1101/gad.1700908.
Go to original source...
Go to PubMed...
- Lin TX, Chao C, Saito S, Mazur SJ, Murphy ME, Appella E, Xu Y (2005). P53 induces differentiation of mouse embryonic stem cells by suppressing Nanog expression. Nature Cell Biol 7(2): 165-171. DOI: 10.1038/ncb1211.
Go to original source...
Go to PubMed...
- Martello G, Smith A (2014). The nature of embryonic stem cells. Annu Rev Cell Dev Biol 30: 647-675. DOI: 10.1146/annurev-cellbio-100913-013116.
Go to original source...
Go to PubMed...
- Nakagawa S, FitzHarris G (2017). Intrinsically defective microtubule dynamics contribute to age-related chromosome segregation errors in mouse oocyte meiosis-I. Curr Biol 27(7): 1040-1047. DOI: 10.1016/j.cub.2017.02.025.
Go to original source...
Go to PubMed...
- Park Y, Depeursinge C, Popescu G (2018). Quantitative phase imaging in biomedicine. Nature Photonics 12(10): 578-589. DOI: 10.1038/s41566-018-0253-x.
Go to original source...
- Poser I, Sarov M, Hutchins JR, Heriche JK, Toyoda Y, Pozniakovsky A, et al. (2008). BAC TransgeneOmics: a high-throughput method for exploration of protein function in mammals. Nat Methods 5(5): 409-415. DOI: 10.1038/nmeth.1199.
Go to original source...
Go to PubMed...
- Quintyne NJ, Reing JE, Hoffelder DR, Gollin SM, Saunders WS (2005). Spindle multipolarity is prevented by centrosomal clustering. Science 307(5706): 127-129. DOI: 10.1126/science.1104905.
Go to original source...
Go to PubMed...
- Ring D, Hubble R, Kirschner M (1982). Mitosis in a cell with multiple centrioles. J Cell Biol 94(3): 549-556. DOI: 10.1083/jcb.94.3.549.
Go to original source...
Go to PubMed...
- Sanchez-Aguilera A, Montalban C, de la Cueva P, Sanchez-Verde L, Morente MM, Garcia-Cosio M, et al. (2006). Tumor microenvironment and mitotic checkpoint are key factors in the outcome of classic Hodgkin lymphoma. Blood 108(2): 662-668. DOI: 10.1182/blood-2005-12-5125.
Go to original source...
Go to PubMed...
- Santaguida S, Richardson A, Iyer DR, M'Saad O, Zasadil L, Knouse KA, et al. (2017). Chromosome mis-segregation generates cell-cycle-arrested cells with complex karyotypes that are eliminated by the immune system. Dev Cell 41(6): 638-651.e5. DOI: 10.1016/j.devcel.2017.05.022.
Go to original source...
Go to PubMed...
- Silkworth WT, Cimini D (2012). Transient defects of mitotic spindle geometry and chromosome segregation errors. Cell Div 7(1): 19. DOI: 10.1186/1747-1028-7-19.
Go to original source...
Go to PubMed...
- Silkworth WT, Nardi IK, Scholl LM, Cimini D (2009). Multipolar spindle pole coalescence is a major source of kinetochore mis-attachment and chromosome mis-segregation in cancer cells. Plos One 4(8): e6564. DOI: 10.1371/journal.pone.0006564.
Go to original source...
Go to PubMed...
- Sluder G, Thompson EA, Miller FJ, Hayes J, Rieder CL (1997). The checkpoint control for anaphase onset does not monitor excess numbers of spindle poles or bipolar spindle symmetry. J Cell Sci 110(Pt 4): 421-429.
Go to original source...
Go to PubMed...
- Spits C, Mateizel I, Geens M, Mertzanidou A, Staessen C, Vandeskelde Y, et al. (2008). Recurrent chromosomal abnormalities in human embryonic stem cells. Nat Biotechnol 26(12): 1361-1363. DOI: 10.1038/nbt.1510.
Go to original source...
Go to PubMed...
- Storchova Z, Kuffer C (2008). The consequences of tetraploidy and aneuploidy. J Cell Sci 121(Pt 23): 3859-3866. DOI: 10.1242/jcs.039537.
Go to original source...
Go to PubMed...
- Vitale I, Galluzzi L, Castedo M, Kroemer G (2011). Mitotic catastrophe: a mechanism for avoiding genomic instability. Nat Rev Mol Cell Biol 12(6): 385-392. DOI: 10.1038/nrm3115.
Go to original source...
Go to PubMed...
- Werbowetski-Ogilvie TE, Bosse M, Stewart M, Schnerch A, Ramos-Mejia V, Rouleau A, et al. (2009). Characterization of human embryonic stem cells with features of neoplastic progression. Nat Biotechnol 27(1): 91-97. DOI: 10.1038/nbt.1516.
Go to original source...
Go to PubMed...
- Yi Q, Zhao X, Huang Y, Ma T, Zhang Y, Hou H, et al. (2011). P53 dependent centrosome clustering prevents multipolar mitosis in tetraploid cells. PLoS One 6(11): e27304. DOI: 10.1371/journal.pone.0027304.
Go to original source...
Go to PubMed...
- Zhang M, Cheng L, Jia Y, Liu G, Li C, Song S, et al. (2016). Aneuploid embryonic stem cells exhibit impaired differentiation and increased neoplastic potential. EMBO J 35(21): 2285-2300. DOI: 10.15252/embj.201593103.
Go to original source...
Go to PubMed...
- Zhang ZN, Chung SK, Xu Z, Xu Y (2014). Oct4 maintains the pluripotency of human embryonic stem cells by inactivating p53 through Sirt1-mediated deacetylation. Stem Cells 32(1): 157-165. DOI: 10.1002/stem.1532.
Go to original source...
Go to PubMed...
This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.