J Appl Biomed 18:87-95, 2020 | DOI: 10.32725/jab.2020.011

A biochemical approach to the anti-inflammatory, antioxidant and antiapoptotic potential of beta-carotene as a protective agent against bromobenzene-induced hepatotoxicity in female Wistar albino rats

Priya Josson Akkara1,2, Evan Prince Sabina1,*
1 Vellore Institute of Technology, School of Bio Sciences and Technology, Vellore, India
2 Kristu Jayanti College (Autonomous), Bengaluru, India

Bromobenzene is a compound which has contributed much in understanding the mechanisms involved in xenobiotic hepatotoxicity induced by drugs and environment pollutants. In the present study, the protective and ameliorative effect of beta-carotene was investigated against bromobenzene-induced hepatotoxicity and compared with silymarin, a standard hepatoprotective reference drug. Beta-carotene (10 mg/kg b.w. p.o.) was administered to the rats for 9 days before intragastric intubation of bromobenzene (10 mmol/kg b.w.). Liver marker enzymes (aspartate transaminase, alanine transaminase and alkaline phosphatase), total protein content, bilirubin, total cholesterol, high-density lipoproteins, triglycerides, antioxidant status (reduced glutathione, superoxide dismutase, catalase, glutathione-S-transferase and glutathione peroxidase) were assessed along with histopathological analysis. ELISA was performed for analysing the levels of cytokines such as TNF-α, IL-1β and IL-6 in serum and in the liver. Caspase-3, COX-2 and NF-κB were evaluated by Western blotting. Administration of bromobenzene resulted in elevated levels of liver marker enzymes, bilirubin, lipid peroxidation and cytokines but deterioration in total protein content, antioxidant levels and histopathological conditions. Pre-treatment with beta-carotene not only significantly decreased the levels of liver markers, lipid peroxidation and cytokines but also improved histo-architecture and increased antioxidant levels minimising oxidative stress, and reduced factors contributing to apoptosis. This significant reversal of the biochemical changes on pre-treatment with beta-carotene in comparison with rats administered with bromobenzene clearly demonstrates that beta-carotene possesses promising hepatoprotective effect through its antioxidant, anti-inflammatory and antiapoptotic activity and hence is suggested as a potential therapeutic agent for protection from bromobenzene.

Keywords: Antioxidant; Beta-carotene; Bromobenzene; Cytokines; Hepatotoxicity; Oxidative stress
Conflicts of interest:

The authors have no conflict of interests to declare.

Received: February 21, 2019; Revised: July 27, 2020; Accepted: July 28, 2020; Prepublished online: August 10, 2020; Published: August 27, 2020  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Josson Akkara P, Sabina EP. A biochemical approach to the anti-inflammatory, antioxidant and antiapoptotic potential of beta-carotene as a protective agent against bromobenzene-induced hepatotoxicity in female Wistar albino rats. J Appl Biomed. 2020;18(2-3):87-95. doi: 10.32725/jab.2020.011. PubMed PMID: 34907730.
Download citation

References

  1. Abou Seif HS (2016). Physiological changes due to hepatotoxicity and the protective role of some medicinal plants. Beni-Suef Univ J Basic Appl Sci 5: 134-146. DOI: 10.1016/j.bjbas.2016.03.004. Go to original source...
  2. Aghvami M, Salimi A, Eshghi P, Zarei MH, Farzaneh S, Sattari F, et al. (2018). Targeting the mitochondrial apoptosis pathway by a newly synthesized COX-2 inhibitor in pediatric ALL lymphocytes. Future Med Chem 10(19): 2277-2289. DOI: 10.4155/fmc-2018-0032. Go to original source... Go to PubMed...
  3. Arena A, Zimmer TS, van Scheppingen J, Korotkov A, Anink JJ, Mühlebner A, et al. (2018). Oxidative stress and inflammation in a spectrum of epileptogenic cortical malformations: molecular insights into their interdependence. Brain Pathol Zurich Switz 29(3): 351-365. DOI: 10.1111/bpa.12661. Go to original source... Go to PubMed...
  4. Avraham Y, Berry EM, Donskoy M, Ahmad WA, Vorobiev L, Albeck A, Mankuta D (2017). Beta-carotene as a novel therapy for the treatment of "Autistic like behavior" in animal models of Autism. Behav Brain Res 364: 469-479. DOI: 10.1016/j.bbr.2017.09.041. Go to original source... Go to PubMed...
  5. Bahadir A, Ceyhan A, Öz Gergin Ö, Yalçin B, Ülger M, Özyazgan TM, Yay A (2018). Protective effects of curcumin and beta-carotene on cisplatin-induced cardiotoxicity: An experimental rat model. Anatol J Cardiol 19: 213-221. DOI: 10.14744/AnatolJCardiol.2018.53059. Go to original source... Go to PubMed...
  6. Chen J, Jiang W, Shao L, Zhong D, Wu Y, Cai J (2016). Association between intake of antioxidants and pancreatic cancer risk: a meta-analysis. Int J Food Sci Nutr 67: 744-753. DOI: 10.1080/09637486.2016.1197892. Go to original source... Go to PubMed...
  7. Choudhary AK, Devi RS (2014). Serum biochemical responses under oxidative stress of aspartame in wistar albino rats. Asian Pac J Trop Dis 4: S403-S410. DOI: 10.1016/S2222-1808(14)60478-3. Go to original source...
  8. Darwish WS, Ikenaka Y, Nakayama S, Mizukawa H, Thompson LA, Ishizuka M (2018). β-carotene and retinol reduce benzo[a]pyrene-induced mutagenicity and oxidative stress via transcriptionalmodulation of xenobiotic metabolizing enzymes in human HepG2 cell line. Environ Sci Pollut Res. Int 25: 6320-6328. DOI: 10.1007/s11356-017-0977-z. Go to original source... Go to PubMed...
  9. Ezhilarasan D (2018). Oxidative stress is bane in chronic liver diseases: Clinical and experimental perspective. Arab J Gastroenterol 19(2): 56-64. DOI: 10.1016/j.ajg.2018.03.002. Go to original source... Go to PubMed...
  10. Feyissa T, Asres K, Engidawork E (2013). Renoprotective effects of the crude extract and solvent fractions of the leaves of Euclea divinorum Hierns against gentamicin-induced nephrotoxicity in rats. J Ethnopharmacol 145: 758-766. DOI: 10.1016/j.jep.2012.12.006. Go to original source... Go to PubMed...
  11. Fried MW, Navarro VJ, Afdhal N, Belle SH, Wahed AS, Hawke RL, et al. (2012). Effect of silymarin (milk thistle) on liver disease in patients with chronic hepatitis C unsuccessfully treated with interferon therapy: a randomized controlled trial. JAMA 308(3): 274-282. DOI: 10.1001/jama.2012.8265. Go to original source... Go to PubMed...
  12. Fujisawa S, Murakami Y (2016). Eugenol and Its Role in Chronic Diseases. Adv Exp Med Biol 929: 45-66. DOI: 10.1007/978-3-319-41342-6_3. Go to original source... Go to PubMed...
  13. Geeviman K, Babu D, Prakash Babu P (2018). Pantoprazole Induces Mitochondrial Apoptosis and Attenuates NF-κB Signaling in Glioma Cells. Cell Mol Neurobiol 38(8): 1491-1504. DOI: 10.1007/s10571-018-0623-4. Go to original source... Go to PubMed...
  14. Gopi S, Setty OH (2010). Beneficial effect of the administration of Hemidesmus indicus against bromobenzene induced oxidative stress in rat liver mitochondria. J Ethnopharmacol 127: 200-203. DOI: 10.1016/j.jep.2009.09.043. Go to original source... Go to PubMed...
  15. Habig WH, Pabst MJ, Jakoby WB (1974). Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem 249(22): 7130-7139. Go to original source...
  16. Hamed MA, El-Rigal NS, Ali SA (2013). Effects of black seed oil on resolution of hepato-renal toxicity induced bybromobenzene in rats. Eur Rev Med Pharmacol Sci 17: 569-581. Go to PubMed...
  17. Heijne WHM, Slitt AL, van Bladeren PJ, Groten JP, Klaassen CD, Stierum RH, van Ommen B (2004). Bromobenzene-induced hepatotoxicity at the transcriptome level. Toxicol Sci 79: 411-422. DOI: 10.1093/toxsci/kfh128. Go to original source... Go to PubMed...
  18. Jaeschke H (2000). Reactive oxygen and mechanisms of inflammatory liver injury. J Gastroenterol Hepatol 15: 718-724. DOI: 10.1046/j.1440-1746.2000.02207.x. Go to original source... Go to PubMed...
  19. Jaeschke H, Gores GJ, Cederbaum AI, Hinson JA, Pessayre D, Lemasters JJ (2002). Mechanisms of hepatotoxicity. Toxicol Sci 65: 166-176. DOI: 10.1093/toxsci/65.2.166. Go to original source... Go to PubMed...
  20. Kakita H, Aoyama M, Hussein MH, Kato S, Suzuki S, Ito T, et al. (2009). Diclofenac enhances proinflammatory cytokine-induced nitric oxide production through NF-κB signaling in cultured astrocytes. Toxicol Appl Pharmacol 238: 56-63. DOI: 10.1016/j.taap.2009.04.014. Go to original source... Go to PubMed...
  21. Kluwe WM, Maronpot RR, Greenwell A, Harrington F (1984). Interactions between Bromobenzene Dose, Glutathione Concentrations, and Organ Toxicities in Single- and Multiple-Treatment Studies. Toxicol Sci 4: 1019-1028. DOI: 10.1093/toxsci/4.6.1019. Go to original source...
  22. Koriem KMM, Arbid MS (2018). Evaluating of β-carotene role in ameliorating of favism-induced disturbances in blood and testis. J Complement Integr Med 15(3). DOI: 10.1515/jcim-2017-0164. Go to original source... Go to PubMed...
  23. Li S, Tan H-Y, Wang N, Zhang Z-J, Lao L, Wong C-W, Feng Y (2015). The Role of Oxidative Stress and Antioxidants in Liver Diseases. Int J Mol Sci 16: 26087-26124. DOI: 10.3390/ijms161125942. Go to original source... Go to PubMed...
  24. Liu Z, Ren Z, Zhang J, Chuang C-C, Kandaswamy E, Zhou T, Zuo L (2018). Role of ROS and Nutritional Antioxidants in Human Diseases. Front Physiol 9: 477. DOI: 10.3389/fphys.2018.00477. Go to original source... Go to PubMed...
  25. Ma E, Iso H, Yamagishi K, Ando M, Wakai K, Tamakoshi A (2018). Dietary Antioxidant Micronutrients and All-Cause Mortality: The Japan Collaborative Cohort Study for Evaluation of Cancer Risk. J Epidemiol 28(9): 388-396. DOI: 10.2188/jea.JE20170023. Go to original source... Go to PubMed...
  26. Marklund S, Marklund G (1974). Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenientassay for superoxide dismutase. Eur J Biochem 47(3): 469-474. DOI: 10.1111/j.1432-1033.1974.tb03714.x. Go to original source... Go to PubMed...
  27. Miller NE, Thomas D, Billings RE (1990). Bromobenzene metabolism in vivo and in vitro. The mechanism of 4-bromocatechol formation. Drug Metab Dispos Biol Fate Chem 18(3): 304-308. Go to original source...
  28. Moron M, Depierre J, Mannervik B (1979). Levels of glutathione, glutathione reductase and glutathione S-transferase activities in rat lung and liver. Biochim Biophys Acta 582: 67-78. DOI: 10.1016/0304-4165(79)90289-7. Go to original source... Go to PubMed...
  29. Nascimento M, Piran R, Da Costa RM, Giordani MA, Carneiro FS, Aguiar DH, et al. (2018). Hepatic injury induced by thioacetamide causes aortic endothelial dysfunction by a cyclooxygenase-dependent mechanism. Life Sci 212: 168-175. DOI: 10.1016/j.lfs.2018.09.051. Go to original source... Go to PubMed...
  30. Nita M, Grzybowski A (2016). The Role of the Reactive Oxygen Species and Oxidative Stress in the Pathomechanism of the Age-Related Ocular Diseases and Other Pathologies of the Anterior and Posterior Eye Segments in Adults. Oxid Med Cell Longev 2016: 3164734. DOI: 10.1155/2016/3164734. Go to original source... Go to PubMed...
  31. Niu X, Zheng S, Liu H, Li S (2018). Protective effects of taurine against inflammation, apoptosis, and oxidative stress in brain injury. Mol Med Rep 18(5): 4516-4522. DOI: 10.3892/mmr.2018.9465. Go to original source... Go to PubMed...
  32. Ohkawa H, Ohishi N, Yagi K (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95: 351-358. DOI: 10.1016/0003-2697(79)90738-3. Go to original source... Go to PubMed...
  33. Rodríguez-Rodríguez E, López-Sobaler AM, Navia B, Andrés P, Jiménez-Ortega AI, Ortega RM (2017). β-Carotene Concentration and Its Association with Inflammatory Biomarkers in Spanish Schoolchildren. Ann Nutr Metab 71: 80-87. DOI: 10.1159/000479009. Go to original source... Go to PubMed...
  34. Rotruck JT, Pope AL, Ganther HE, Swanson AB, Hafeman DG, Hoekstra WG (1973). Selenium: biochemical role as a component of glutathione peroxidase. Science 179: 588-590. DOI: 10.1126/science.179.4073.588. Go to original source... Go to PubMed...
  35. Sinha AK (1972). Colorimetric assay of catalase. Anal Biochem 47: 389-394. DOI: 10.1016/0003-2697(72)90132-7. Go to original source... Go to PubMed...
  36. Vedi M, Sabina EP (2016). Assessment of hepatoprotective and nephroprotective potential of withaferin A on bromobenzene-induced injury in Swiss albino mice: possible involvement of mitochondrial dysfunction and inflammation. Cell Biol Toxicol 32: 373-390. DOI: 10.1007/s10565-016-9340-2. Go to original source... Go to PubMed...
  37. Vedi M, Rasool M, Sabina EP (2014a). Amelioration of bromobenzene hepatotoxicity by Withania somnifera pretreatment: Role of mitochondrial oxidative stress. Toxicol Rep 1: 629-638. DOI: 10.1016/j.toxrep.2014.08.009. Go to original source... Go to PubMed...
  38. Vedi M, Rasool M, Sabina EP (2014b). Protective effect of administration of Withania somnifera against bromobenzene induced nephrotoxicity and mitochondrial oxidative stress in rats. Ren Fail 36: 1095-1103. DOI: 10.3109/0886022X.2014.918812. Go to original source... Go to PubMed...
  39. Wang B, Van Veldhoven PP, Brees C, Rubio N, Nordgren M, Apanasets O, et al. (2013). Mitochondria are targets for peroxisome-derived oxidative stress in cultured mammalian cells. Free Radic Biol Med 65: 882-894. DOI: 10.1016/j.freeradbiomed.2013.08.173. Go to original source... Go to PubMed...
  40. Wang XD, Russell RM (1999). Procarcinogenic and anticarcinogenic effects of beta-carotene. Nutr Rev 57: 263-272. DOI: 10.1111/j.1753-4887.1999.tb01809.x. Go to original source... Go to PubMed...
  41. Yang J, Liu D, Jing W, Dahms H-U, Wang L (2013). Effects of cadmium on lipid storage and metabolism in the freshwater crab Sinopotamon henanense. PloS One 8: e77569. DOI: 10.1371/journal.pone.0077569. Go to original source... Go to PubMed...
  42. Zhou L, Ouyang L, Lin S, Chen S, Liu Y, Zhou W, Wang X (2018). Protective role of β-carotene against oxidative stress and neuroinflammation in a rat model of spinal cord injury. Int Immunopharmacol 61: 92-99. DOI: 10.1016/j.intimp.2018.05.022. Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.