J Appl Biomed 18:126-135, 2020 | DOI: 10.32725/jab.2020.016

The effects of Rosmarinus officinalis L. essential oil and its nanoemulsion on dyslipidemic Wistar rats

Ana Paula Santos Rodrigues1,2, Belmira Silva Faria e Souza1, Albenise Santana Alves Barros1,3, Helison de Oliveira Carvalho1,3, Jonatas Lobato Duarte1,2, Letícia Elizandra Mehl Boettger2,6, Robson Barbosa2,6, Adriana Maciel Ferreira1, Irlon Maciel Ferreira2,3,4, Caio Pinho Fernandes2,5, Arlindo César Matias Pereira1, José Carlos Tavares Carvalho1,2,3,*
1 Universidade Federal do Amapá, Departamento de Ciências Biológicas e da Saúde, Curso de Farmácia, Laboratório de Pesquisa em Fármacos, Macapá, Amapá, Brasil
2 Universidade Federal do Amapá, Departamento de Ciências Biológicas e da Saúde, Programa de Pós-graduação em Ciências Farmacêuticas, Macapá, Amapá, Brasil
3 Universidade Federal do Amapá, Departamento de Ciências Biológicas e da Saúde, Programa de Pós-graduação em Inovação Farmacêutica, Macapá, Amapá, Brasil
4 Universidade Federal do Amapá, Curso de Química, Laboratório de Biocatálise e Biotransformação em Química Orgânica, Macapá, Amapá, Brasil
5 Universidade Federal do Amapá, Departamento de Ciências Biológicas e da Saúde, Curso de Farmácia, Laboratório de Nanobiotecnologia Fitofarmacêutica, Macapá, Amapá, Brasil
6 Universidade Federal do Amapá, Departamento de Ciências Biológicas e da Saúde, Curso de Farmácia, Laboratório de Bioquímica e Citologia Clínica, Macapá, Amapá, Brasil

Dyslipidemias are lipid metabolism alterations that cause increased levels of serum lipoprotein, cholesterol, and triglycerides. These alterations are associated with a higher incidence of cardiovascular diseases and are a risk factor for atherosclerosis development. This study aimed to evaluate the effect of Rosmarinus officinalis essential oil (EORO, 100 mg/kg) and its nanoemulsion (NEORO, 500 µg/kg) on Triton and coconut saturated-fat-induced (CSF) dyslipidemias using Wistar rats. The phytochemical evaluation of EORO performed by gas chromatography-mass spectroscopy (GC-MS) revealed 1,8-cineole (33.70%), camphor (27.68%), limonene (21.99%), and α-pinene (8.13%) as its major compounds. Triton-induced dyslipidemia significantly increased total cholesterol, LDL, and triglycerides levels. On the other hand, the groups treated with EORO and NEORO had significantly reduced total cholesterol, LDL, and triglycerides compared to the group treated only with Triton. Similar results were observed on the positive control treated with simvastatin. Dyslipidemia induced with coconut saturated-fat (CSF) caused abdominal fat gain, hypercholesterolemia, hypertriglyceridemia, increased LDL levels, and atherogenesis in the aorta. In contrast, the groups treated with EORO, NEORO, and simvastatin had significantly reduced hypercholesterolemia and hypertriglyceridemia, reduced abdominal fat gain, and absence of atherogenesis in the vascular endothelium. Overall, in the Triton-induced dyslipidemia model, EORO treatment had superior values than NEORO's (and simvastatin), although the differences were not too high, while in the CSF model, the values were mixed. In this manner, our results show an anti-dyslipidemic and anti-atherogenic activity effect by EORO and NEORO.

Keywords: Anti-atherogenic; Anti-dyslipidemic; Essential oil; Nanoemulsion; Rosmarinus officinalis
Grants and funding:

The authors would like to thank CAPES (no 3292/2013 AUXPE), CNPq Proc. 402332/2013-0 and FAPEAP (No 003/2018 – Programa de Pesquisa para o SUS/FAPEAP/MS-DECIT/CNPq/ SESA-AP) for the financial support and Fundação de Amparo a Pesquisa do Estado do Amapá – FAPEAP for the APSR scholarship.

Conflicts of interest:

The authors declare that they have no conflict of interests.

Received: March 21, 2019; Revised: October 1, 2020; Accepted: November 3, 2020; Prepublished online: November 6, 2020; Published: December 14, 2020  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Santos Rodrigues AP, Faria e Souza BS, Alves Barros AS, de Oliveira Carvalho H, Lobato Duarte J, Letícia Elizandra Boettger M, et al.. The effects of Rosmarinus officinalis L. essential oil and its nanoemulsion on dyslipidemic Wistar rats. J Appl Biomed. 2020;18(4):126-135. doi: 10.32725/jab.2020.016. PubMed PMID: 34907765.
Download citation

References

  1. Affholder M-C, Prudent P, Masotti V, Coulomb B, Rabier J, Nguyen B, et al. (2013). Transfer of metals and metalloids from soil to shoots in wild rosemary (Rosmarinus officinalis L.) growing on a former lead smelter site: Human exposure risk. Sci Total Environ 454: 219-229. DOI: 10.1016/j.scitotenv.2013.02.086. Go to original source... Go to PubMed...
  2. Blasi C (2008). The autoimmune origin of atherosclerosis. Atherosclerosis 201: 17-32. DOI: 10.1016/j.atherosclerosis.2008.05.025. Go to original source... Go to PubMed...
  3. Bonfim MR, Oliveira ASB, Amaral SL, Monteiro HL (2015). Tratamento das Dislipidemias com Estatinas e Exercícios Físicos: Evidências Recentes das Respostas Musculares. Arq Bras Cardiol 104: 324-332. DOI: 10.5935/abc.20150005. Go to original source... Go to PubMed...
  4. Borges RS, Lima ES, Keita H, Ferreira IM, Fernandes CP, Cruz RAS, et al. (2017). Anti-inflammatory and antialgic actions of a nanoemulsion of Rosmarinus officinalis L. essential oil and a molecular docking study of its major chemical constituents. Inflammopharmacology 26: 1-13. DOI: 10.1007/s10787-017-0374-8. Go to original source... Go to PubMed...
  5. Boullart ACI, De Graaf J, Stalenhoef AF (2012). Triglicerídeos séricos e risco de doença cardiovascular. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids 1821(5): 867-875. DOI: 10.1016/j.bbalip.2011.10.002. Go to original source... Go to PubMed...
  6. Brea Hernando ÁJ (2014). Dianas terapéuticas en el tratamiento de las dislipemias: colesterol no unido a lipoproteínas de alta densidad y colesterol unido a lipoproteínas de alta densidad. Clínica e investigación en arteriosclerosis. 26: 3-6. DOI: 10.1016/S0214-9168(14)70018-X. Go to original source... Go to PubMed...
  7. Carvalho HO, Souza BSF, Santos IVF, Resque RL, Keita H, Fernandes CP, et al. (2016). Hypoglycemic effect of formulation containing hydroethanolic extract of Calophyllum brasiliense in diabetic rats induced by streptozotocin. Rev Bras Farmacogn 26: 10-18. DOI: 10.1016/j.bjp.2016.04.004. Go to original source...
  8. Cho KH (2012). 1, 8-cineole protected human lipoproteins from modification by oxidation and glycation and exhibited serum lipid-lowering and anti-inflammatory activity in zebrafish. BMB Rep 45(10): 565-570. DOI: 10.5483/BMBRep.2012.45.10.044. Go to original source... Go to PubMed...
  9. Cleff MB, Meinerz ARM, Madrid I, Fonseca AO, Alves GH, et al. (2012). Perfil de suscetibilidade de leveduras do gênero Candida isoladas de animais ao óleo essencial de Rosmarinus officinalis L. Rev Bras Plantas Med 14: 43-49. DOI: 10.1590/S1516-05722012000100007. Go to original source...
  10. Dobiá¹ová M (2004). Atherogenic index of plasma [log (triglycerides/HD-cholesterol)]: theoretical and practical implications. Clin Chem 50(7): 1113-1115. DOI: 10.1373/clinchem.2004.033175. Go to original source... Go to PubMed...
  11. Dong Z, Shi H, Zhao M, Zhang X, Huang W, Wang Y, et al. (2018). Loss of LCAT activity in the golden Syrian hamster elicits pro-atherogenic dyslipidemia and enhanced atherosclerosis. Metabolism 83: 245-255. DOI: 10.1016/j.metabol.2018.03.003. Go to original source... Go to PubMed...
  12. Dowla S, Aslibekyan S, Goss A, Fontaine K, Ashraf AP (2018). Dyslipidemia is associated with pediatric nonalcoholic fatty liver disease. J Clin Lipidol 12(4): 981-987. DOI: 10.1016/j.jacl.2018.03.089. Go to original source... Go to PubMed...
  13. Duarte JL, Amado JRR, Oliveira AEMFM, Cruz RAS, Ferreira AM, Souto RNP, et al. (2015). Evaluation of larvicidal activity of a nanoemulsion of Rosmarinus officinalis essential oil. Rev Bras Farmacogn 25: 189-189. DOI: 10.1016/j.bjp.2015.02.010. Go to original source...
  14. Fernandes CP, Mascarenhas MP, Zibetti FM, Lima BG, Oliveira RPRF, Rocha L (2013). HLB value, an importante parameter for the development of essential oil phytopharmaceuticals. Braz J Pharm 23: 108-114. DOI: 10.1590/S0102-695X2012005000127. Go to original source...
  15. Handayani R, Sulistyo J, Rahayu RD (2009). Extraction of coconut oil (Cocos nucifera L.) through fermentation system. Biodiversitas 10: 3. DOI: 10.13057/biodiv/d100309. Go to original source...
  16. Hassani FV, Shirani K, Hosseinzadeh H (2016). Rosemary (Rosmarinus officinalis) as a potential therapeutic plant in metabolic syndrome: a review. Naunyn Schmiedeberg's Arch Pharmacol 389: 931-949. DOI: 10.1007/S00210-016-1256-0. Go to original source... Go to PubMed...
  17. Jackson CL, Bennett MR, Biessen EAL, Johnson J.L, Krams RR (2007). Assessment of unstable atherosclerosis in mice. Am Heart Assoc 27: 714-720. DOI. 10.1161/01.ATV.0000261873.86623.e1. Go to original source... Go to PubMed...
  18. Jin S, Hong JH, Jung SH, Cho KH (2011). Turmeric and laurel aqueous extracts exhibit in vitro anti-atherosclerotic activity and in vivo hypolipidemic effects in a zebrafish model. J Med Food 14(3): 247-256. DOI: 10.1089/jmf.2009.1389. Go to original source... Go to PubMed...
  19. Jing L, Zhang Y, Fan S, Gu M, Guan Y, Lu X, et al. (2013). Preventive and ameliorating effects of citrus D-limonene on dyslipidemia andhyperglycemia in mice with high-fat diet-induced obesity. Eur J Pharmacol 715: 46-55. DOI: 10.1016/j.ejphar.2013.06.022. Go to original source... Go to PubMed...
  20. Khan A, Zaman G, Anderson RA (2009). Bay leaves improve glucose and lipid profile of people with type 2 diabetes. J Clin Bioch Nutr 44(1): 52-56. DOI: 10.3164/jcbn.08-188. Go to original source... Go to PubMed...
  21. Langin D (2006). Adipose tissue lipolysis as a metabolic pathway to define pharmacological strategies against obesity and the metabolic syndrome. Pharmacol Res 53: 482-491. DOI: 10.1016/j.phrs.2006.03.009. Go to original source... Go to PubMed...
  22. Lee H, Woo M, Kim M, Noh JS, Song YO (2018). Antioxidative and Cholesterol-Lowering Effects of Lemon Essential Oil in Hypercholesterolemia-Induced Rabbits. Prev Nutr Food Sci 23: 8. DOI: 10.3746/pnf.2018.23.1.8. Go to original source... Go to PubMed...
  23. Lin CF, Chang YH, Chien SC, YH (2018). Epidemiology of Dyslipidemia in the Asia Pacific Region. Int J Gerontol 12: 2-6. DOI: 10.1016/j.ijge.2018.02.010. Go to original source...
  24. Ostertag F, Weiss J, McClements DJ (2012). Low-energy formation of edible nanoemulsions: factors influencing droplet size produced by emulsion phase inversion. J Colloid Interface Sci 388: 95-102. DOI: 10.1016/j.jcis.2012.07.089. Go to original source... Go to PubMed...
  25. Ra¹koviæ A, Milanoviæ I, Pavloviæ N, Æeboviæ T, Vukmirovic S, Mikov M (2014). Antioxidant activity of rosemary (Rosmarinus officinalis L.) essential oil and its hepatoprotective potential. BMC Complement Alter Med 14: 225. DOI: 10.1186/1472-6882-14-225. Go to original source... Go to PubMed...
  26. Satyal P, Jonest H, Lopez EM, McFeeters RL, Ali NAA, Mansi I, et al. (2017). Chemotypic Characterization and Biological Activity of Rosmarinus officinalis. Foods 6: 20. DOI: 10.3390/foods6030020. Go to original source... Go to PubMed...
  27. Sedighi R, Zhao YA, Sang S (2015). Preventive and protective properties of rosemary (Rosmarinus officinalis L.) in obesity and diabetes mellitus of metabolic disorders: a brief review. Current Opinion in Food Science 2: 58-70. DOI: 10.1016/j.cofs.2015.02.002. Go to original source...
  28. Selmi S, Rtibi K, Grami D, Sebai H, Marzouki L (2017). Rosemary (Rosmarinus officinalis) essential oil components exhibit anti-hyperglycemic, anti-hyperlipidemic and antioxidant effects in experimental diabetes. Pathophysiology 24: 297-303. DOI: 10.1016/j.pathophys.2017.08.002. Go to original source... Go to PubMed...
  29. Solé I, Solans C, Maestro A, González C, Gutiérrez JM (2012). Study of nanoemulsion formation by dilution of microemulsions. J Colloid Interface Sci 376: 133-139. DOI: 10.1016/j.jcis.2012.02.063. Go to original source... Go to PubMed...
  30. Souza BSF, Carvalho HO, Ferreira IM, da Cunha EL, Barros AS, Taglialegna T, Carvalho JCT (2017a). Effect of the treatment with Euterpe oleracea Mart. oil in rats with Triton-induced dyslipidemia. Biomed Pharmacother 90: 542-547. DOI: 10.1016/j.biopha.2017.04.005. Go to original source... Go to PubMed...
  31. Souza BSF, Carvalho HO, Taglialegna T, Barros ASA, da Cunha EL, Ferreira IM, et al. (2017b). Effect of Euterpe oleracea Mart. (Açaí) Oil on Dyslipidemia Caused by Cocos nucifera L. Saturated Fat in Wistar Rats. J Med Food 20: 830-837. DOI: 10.1089/jmf.2017.0027. Go to original source... Go to PubMed...
  32. Suanarunsawat T, Ayutthaya WDN, Songsak T, Thirawarapan S, Poungshompoo S (2010). Antioxidant Activity and Lipid-Lowering Effect of Essential Oils Extracted from Ocimum sanctum L. Leaves in Rats Fed with a High Cholesterol Die. J Clin Biochem Nutr 46: 52-59. DOI: 10.3164/jcbn.09-52. Go to original source... Go to PubMed...
  33. Takayama C, Faria FM, Almeida ACA, Dunder RJ, Manzo LP, Socca EAR, et al. (2016). Chemical composition of Rosmarinus officinalis essential oil and antioxidant action against gastric damage induced by absolute ethanol in the rat. Asian Pacific Journal of Tropical Biomedicine 6: 677-681. DOI: 10.1016/j.apjtb.2015.09.027. Go to original source...
  34. Yoon M (2009). The role of PPARα in lipid metabolism and obesity: focusing on the effects of estrogen on PPARα actions. Pharmacol Res 60: 151-159. DOI: 10.1016/j.phrs.2009.02.004. Go to original source... Go to PubMed...
  35. Zarzecki MS, Araujo SM, Bortolotto VC, de Paula MT, Jesse CR, Prigol M (2014). Hypolipidemic action of chrysin on Triton WR-1339-induced hyperlipidemia in female C57BL/6 mice. Toxicol Rep 1: 200-208. DOI: 10.1016/j.toxrep.2014.02.003. Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.