J Appl Biomed 19:14-25, 2021 | DOI: 10.32725/jab.2021.001

Synergism between WLBU2 peptide and antibiotics against methicillin-resistant Staphylococcus aureus and extended-spectrum beta-lactamase-producing Enterobacter cloacae

Lina Elsalem1, *, Suhaila Al Sheboul2, Ayat Khasawneh1,3
1 Jordan University of Science and Technology, Faculty of Medicine, Department of Pharmacology, Irbid, Jordan
2 Jordan University of Science and Technology, Faculty of Applied Medical Sciences, Department of Medical Laboratory Sciences, Irbid, Jordan
3 The Jordanian Royal Medical Services, Department of Clinical Pathology and Microbiology, Amman, Jordan

Infections caused by Methicillin-Resistant Staphylococcus aureus (MRSA) and Extended-Spectrum Beta-Lactamase (ESBL) producing Enterobacter cloacae are considered as major therapeutic challenge due to their multidrug-resistant (MDR) phenotype against conventional antibiotics. WLBU2 is an engineered cationic peptide with potent antimicrobial activity. This in-vitro study aimed to evaluate the effects of WLBU2 against clinical isolates of the aforementioned bacteria and assess whether synergistic effects can be achieved upon combination with conventional antibiotics. The minimum inhibitory concentrations (MICs) of antimicrobial agents against bacterial clinical isolates (n = 30/strain) were determined using the microbroth dilution assay. The minimum bactericidal concentrations (MBCs) of WLBU2 were determined from microbroth dilution (MICs) tests by subculturing to agar plates. MICs of WLBU2 were evaluated in the presence of physiological concentrations of salts including NaCl, CaCl2 and MgCl2. To identify bacterial resistance profile, MRSA were treated with Oxacillin, Erythromycin and Vancomycin, while Ceftazidime, Ceftriaxone, Ciprofloxacin and Imipenem were used against Enterobacter cloacae. Combination treatments of antibiotics and sub-inhibitory concentrations of WLBU2 were conducted when MICs indicated intermediate/resistant susceptibility. The MICs/MBCs of WLBU2 were identical for each respective bacteria with values of 0.78-6.25 μM and 1.5-12.5 μM against MRSA and Enterobacter cloacae, respectively. WLBU2 was found as salt resistant. Combination treatment showed that synergistic and additive effects were achieved in many isolates of MRSA and Enterobacter cloacae. Our data revealed that WLBU2 is a potent peptide with bactericidal activity. In addition, it demonstrated the selective advantage of WLBU2 as a potential therapeutic agent under physiological solutions. Our findings also support the combination of WLBU2 and conventional antibiotics with potential application for treatment of resistant bacteria.

Keywords: Antimicrobial peptide; Combination treatment; Resistant bacteria; Salt sensitivity; Synergism; WLBU2
Grants and funding:

This study was financially supported by the Deanship of Research of Jordan University of Science and Technology [Grant number 20180453].

Conflicts of interest:

The authors declare no conflict or competing of interests.

Received: September 3, 2020; Revised: October 31, 2020; Accepted: January 4, 2021; Prepublished online: January 18, 2021; Published: March 3, 2021  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Elsalem L, Al Sheboul S, Khasawneh A. Synergism between WLBU2 peptide and antibiotics against methicillin-resistant Staphylococcus aureus and extended-spectrum beta-lactamase-producing Enterobacter cloacae. J Appl Biomed. 2021;19(1):14-25. doi: 10.32725/jab.2021.001. PubMed PMID: 34907712.
Download citation

References

  1. Abdelbaqi S, Deslouches B, Steckbeck J, Montelaro R, Reed DS (2016). Novel engineered cationic antimicrobial peptides display broad-spectrum activity against Francisella tularensis, Yersinia pestis and Burkholderia pseudomallei. J Med Microbiol 65(2): 188-194. DOI: 10.1099/jmm.0.000209. Go to original source... Go to PubMed...
  2. Blahová J, Králiková K, Krcméry V, Sr., Schäfer V (1999). Extended-spectrum beta-lactamase producing strains of Enterobacter cloacae transferring resistance to cefotaxime and ceftazidime. J Chemother 11(2): 97-102. DOI: 10.1179/joc.1999.11.2.97. Go to original source... Go to PubMed...
  3. Chellat MF, Ragu¾ L, Riedl R (2016). Targeting Antibiotic Resistance. Angew Chem 55(23): 6600-6626. DOI: 10.1002/anie.201506818. Go to original source... Go to PubMed...
  4. Chen C, Deslouches B, Montelaro RC, Di YP (2018). Enhanced efficacy of the engineered antimicrobial peptide WLBU2 via direct airway delivery in a murine model of Pseudomonas aeruginosa pneumonia. Clin Microbiol Infect 24(5): 547.e1-547.e8. DOI: 10.1016/j.cmi.2017.08.029. Go to original source... Go to PubMed...
  5. Chu H-L, Yu H-Y, Yip B-S, Chih Y-H, Liang Ch-W, Cheng H-T, Cheng J-W (2013). Boosting Salt Resistance of Short Antimicrobial Peptides. Antimicrob Agents Chemother 57(8): 4050-4052. DOI: 10.1128/aac.00252-13. Go to original source... Go to PubMed...
  6. Clinical and Laboratory Standards Institute (CLSI) (2017). Performance Standards for Antimicrobial Susceptibility Testing. 27th ed. CLSI supplement M100. [online] ]cit. 2020-01-22]. Available from: http://www.iacld.ir/DL/public/96/CLSI-2017.pdf
  7. Coque TM, Baquero F, Canton R (2008). Increasing prevalence of ESBL-producing Enterobacteriaceae in Europe. Euro Surveill 13(47): 19044. Go to original source... Go to PubMed...
  8. Corbett D, Wise A, Langley T, Skinner K, Trimby E, Birchall S, et al. (2017). Potentiation of Antibiotic Activity by a Novel Cationic Peptide: Potency and Spectrum of Activity of SPR741. Antimicrob Agents Chemother 61(8): e00200-e00217. DOI: 10.1128/aac.00200-17. Go to original source... Go to PubMed...
  9. Dadgostar P (2019). Antimicrobial Resistance: Implications and Costs. Infect Drug Resist 12: 3903-3910. DOI: 10.2147/IDR.S234610. Go to original source... Go to PubMed...
  10. Deslouches B, Clancy C, Nguyen M, et al. (2008). The Antimicrobial Peptide Wlbu2 is Active Against Candida spp., Cryptococcus Neoformans and Leading Causes of Bacterial Sepsis. 48th Annual ICAAC/46th Annual IDSA 2008; abstract No: M-1549. [online[ [cit. 2020-01-22]. Available from: https://www.researchgate.net/publication/267531044_The_Antimicrobial_Peptide_Wlbu2_is_Active_Against_Candida_spp_Cryptococcus_Neoformans_and_Leading_Causes_of_Bacterial_Sepsis
  11. Deslouches B, Islam K, Craigo JK, Paranjape SM, Montelaro RC, Mietzner TA (2005a). Activity of the de novo engineered antimicrobial peptide WLBU2 against Pseudomonas aeruginosa in human serum and whole blood: implications for systemic applications. Antimicrob Agents Chemother 49(8): 3208-3216. DOI: 10.1128/AAC.49.8.3208-3216.2005. Go to original source... Go to PubMed...
  12. Deslouches B, Phadke SM, Lazarevic V, Cascio M, Islam K, Montelaro RC, Mietzner TA (2005b). De novo generation of cationic antimicrobial peptides: influence of length and tryptophan substitution on antimicrobial activity. Antimicrob Agents Chemother 49(1): 316-322. DOI: 10.1128/aac.49.1.316-322.2005. Go to original source... Go to PubMed...
  13. Deslouches B, Steckbeck JD, Craigo JK, Doi Y, Burns JL, Montelaro RC (2015). Engineered cationic antimicrobial peptides to overcome multidrug resistance by ESKAPE pathogens. Antimicrob Agents Chemother 59(2): 1329-1333. DOI: 10.1128/aac.03937-14. Go to original source... Go to PubMed...
  14. Deslouches B, Steckbeck JD, Craigo JK, Doi Y, Mietzner TA, Montelaro RC (2013). Rational design of engineered cationic antimicrobial peptides consisting exclusively of arginine and tryptophan, and their activity against multidrug-resistant pathogens. Antimicrob Agents Chemother 57(6): 2511-2521. DOI: 10.1128/aac.02218-12. Go to original source... Go to PubMed...
  15. Donkor ES, Codjoe FS (2019). Methicillin Resistant Staphylococcus aureus and Extended Spectrum Beta-lactamase Producing Enterobacteriaceae: A TherapeuticChallenge in the 21st Century. Open Microbiol J 13: 94-100. DOI: 10.2174/1874285801913010094. Go to original source...
  16. Ferri M, Ranucci E, Romagnoli P, Giaccone V (2017). Antimicrobial resistance: A global emerging threat to public health systems. Crit Rev Food Sci Nutr 57(13): 2857-2876. DOI: 10.1080/10408398.2015.1077192. Go to original source... Go to PubMed...
  17. Gopal R, Kim YG, Lee JH, Lee SK, Chae JD, Son BK, et al. (2014). Synergistic Effects and Antibiofilm Properties of Chimeric Peptides against Multidrug-Resistant Acinetobacter baumannii Strains. Antimicrob Agents Chemother 58(3): 1622-1629. DOI: 10.1128/aac.02473-13. Go to original source... Go to PubMed...
  18. Huang Y, Carroll KC, Cosgrove SE, Tamma PD (2014). Determining the optimal ceftriaxone MIC for triggering extended-spectrum beta-lactamase confirmatory testing. J Clin Microbiol 52(6): 2228-2230. DOI: 10.1128/jcm.00716-14. Go to original source... Go to PubMed...
  19. Kohn EM, Shirley DJ, Arotsky L, Picciano AM, Ridgway Z, Urban MW, et al. (2018). Role of Cationic Side Chains in the Antimicrobial Activity of C18G. Molecules (Basel, Switzerland) 23(2): 329. DOI: 10.3390/molecules23020329. Go to original source... Go to PubMed...
  20. Kshetry AO, Pant ND, Bhandari R, Khatri S, Shrestha KL, Upadhaya SK, et al. (2016). Minimum inhibitory concentration of vancomycin to methicillin resistant Staphylococcus aureus isolated from different clinical samples at a tertiary care hospital in Nepal. Antimicrob Resist Infect Control 5(1): 27. DOI: 10.1186/s13756-016-0126-3. Go to original source... Go to PubMed...
  21. Lashua LP, Melvin JA, Deslouches B, Pilewski JM, Montelaro RC, Bomberger JM (2016). Engineered cationic antimicrobial peptide (eCAP) prevents Pseudomonas aeruginosa biofilm growth on airway epithelial cells. J Antimicrob Chemother 71(8): 2200-2207. DOI: 10.1093/jac/dkw143. Go to original source... Go to PubMed...
  22. Li J, Koh J-J, Liu S, Lakshminarayanan R, Verma CC, Beuerman RW (2017). Membrane Active Antimicrobial Peptides: Translating Mechanistic Insights to Design. Front Neurosci 11: 73. DOI: 10.3389/fnins.2017.00073. Go to original source... Go to PubMed...
  23. Lin Q, Deslouches B, Montelaro RC, Di YP (2018). Prevention of ESKAPE pathogen biofilm formation by antimicrobial peptides WLBU2 and LL37. Int J Antimicrob Agents 52(5): 667-672. DOI: 10.1016/j.ijantimicag.2018.04.019. Go to original source... Go to PubMed...
  24. Majidpour A, Fathizadeh S, Afshar M, Rahbar M, Boustanshenas M, Heidarzadeh M, et al. (2017). Dose-Dependent Effects of Common Antibiotics Used to Treat Staphylococcus aureus on Biofilm Formation. Iran J Pathol 12(4): 362-370. DOI: 10.30699/ijp.2017.27993. Go to original source...
  25. Mandell JB, Deslouches B, Montelaro RC, Shanks RMQ, Doi Y, Urish KL (2017). Elimination of Antibiotic Resistant Surgical Implant Biofilms Using an Engineered Cationic Amphipathic Peptide WLBU2. Sci Rep 7(1): 18098. DOI: 10.1038/s41598-017-17780-6. Go to original source... Go to PubMed...
  26. Mohamed MF, Abdelkhalek A, Seleem MN (2016). Evaluation of short synthetic antimicrobial peptides for treatment of drug-resistant and intracellular Staphylococcus aureus. Sci Rep 6(1): 29707. DOI: 10.1038/srep29707. Go to original source... Go to PubMed...
  27. Mohamed MF, Hamed MI, Panitch A, Seleem MN (2014). Targeting methicillin-resistant Staphylococcus aureus with short salt-resistant synthetic peptides. Antimicrob Agents Chemother 58(7): 4113-4122. DOI: 10.1128/aac.02578-14. Go to original source... Go to PubMed...
  28. Mohammed I, Abass E (2019). Phenotypic detection of Extended Spectrum β-Lactamases (ESBL) among gram negative uropathogens reveals highly susceptibility to imipenem. Pak J Med Sci 35(4): 1104-1109. DOI: 10.12669/pjms.35.4.207. Go to original source... Go to PubMed...
  29. Novak KF, Diamond WJ, Kirakodu S, Peyyala R, Anderson KW, Montelaro RC, Mietzner TA (2007). Efficacy of the De Novo-Derived Antimicrobial Peptide WLBU2 against Oral Bacteria. Antimicrob Agents Chemother 51: 1837-1839. DOI: 10.1128/AAC.00924-06. Go to original source... Go to PubMed...
  30. Paranjape SM, Lauer TW, Montelaro RC, Mietzner TA, Vij N (2013). Modulation of proinflammatory activity by the engineered cationic antimicrobial peptide WLBU-2. F1000Research 2: 36. DOI: 10.12688/f1000research.2-36.v1. Go to original source... Go to PubMed...
  31. Prestinaci F, Pezzotti P, Pantosti A (2015). Antimicrobial resistance: a global multifaceted phenomenon. Pathog Glob Health 109: 309-318. DOI: 10.1179/2047773215Y.0000000030. Go to original source... Go to PubMed...
  32. Rich H, Deslouches B, McHugh KJ, Montelaro R, Robinson KM, Alcorn JF (2016). The Synthetic Antimicrobial Peptide WLBU2 Promotes Staphylococcus aureus Clearance in the Mouse Lung. D32. PNEUMONIA: A6727-A6727. [online] [cit. 2020-01-22]. Available from: https://www.atsjournals.org/doi/abs/10.1164/ajrccm-conference.2016.193.1_MeetingAbstracts.A6727
  33. Rooney PJ, O'Leary MC, Loughrey AC, McCalmont M, Smyth B, Donaghy P, et al. (2009). Nursing homes as a reservoir of extended-spectrum beta-lactamase (ESBL)-producing ciprofloxacin-resistant Escherichia coli. J Antimicrob Chemother 64(3): 635-641. DOI: 10.1093/jac/dkp220. Go to original source... Go to PubMed...
  34. Sani M-A, Separovic F (2016). How Membrane-Active Peptides Get into Lipid Membranes. Acc Chem Res 49(6): 1130-1138. DOI: 10.1021/acs.accounts.6b00074. Go to original source... Go to PubMed...
  35. Sinha R, Shukla P (2019). Antimicrobial Peptides: Recent Insights on Biotechnological Interventions and Future Perspectives. Protein Pept Lett 26(2): 79-87. DOI: 10.2174/0929866525666181026160852. Go to original source... Go to PubMed...
  36. Spanu T, Luzzaro F, Perilli M, Amicosante G, Toniolo A, Fadda G (2002). Occurrence of extended-spectrum beta-lactamases in members of the family Enterobacteriaceae in Italy: implications for resistance to beta-lactams and other antimicrobial drugs. Antimicrob Agents Chemother 46(1): 196-202. DOI: 10.1128/aac.46.1.196-202.2002. Go to original source... Go to PubMed...
  37. Stefani S, Goglio A (2010). Methicillin-resistant Staphylococcus aureus: related infections and antibiotic resistance. Int J Infect Dis 14: S19-S22. DOI: 10.1016/j.ijid.2010.05.009. Go to original source... Go to PubMed...
  38. Swedan S, Shubair Z, Almaaytah A (2019). Synergism of cationic antimicrobial peptide WLBU2 with antibacterial agents against biofilms of multi-drug resistant Acinetobacter baumannii and Klebsiella pneumoniae. Infect Drug Resist 12: 2019-2030. DOI: 10.2147/idr.s215084. Go to original source... Go to PubMed...
  39. Tripathi K (2013). Essentials of Medical Pharmacology. 7th ed. Jaypee Brothers Medical Pub., 1002 p. Go to original source...
  40. Turner J, Cho Y, Dinh NN, Waring AJ, Lehrer RI (1998). Activities of LL-37, a cathelin-associated antimicrobial peptide of human neutrophils. Antimicrob Agents Chemother 42(9): 2206-2214. DOI: 10.1128/AAC.42.9.2206. Go to original source... Go to PubMed...
  41. Tyers M, Wright GD (2019). Drug combinations: a strategy to extend the life of antibiotics in the 21st century. Nat Rev Microbiol 17(3): 141-155. DOI: 10.1038/s41579-018-0141-x. Go to original source... Go to PubMed...
  42. Wiener ES, Heil EL, Hynicka LM, Johnson JK (2016). Are Fluoroquinolones Appropriate for the Treatment of Extended-Spectrum β-Lactamase-Producing Gram-Negative Bacilli? J Pharm Technol 32(1): 16-21. DOI: 10.1177/8755122515599407. Go to original source... Go to PubMed...
  43. Wu X, Li Z, Li X, Tian Y, Fan Y, Yu C, et al. (2017). Synergistic effects of antimicrobial peptide DP7 combined with antibiotics against multidrug-resistant bacteria. Drug Des Devel Ther 11: 939-946. DOI: 10.2147/dddt.s107195. Go to original source... Go to PubMed...
  44. Yildiz Ö, Çoban AY, ªener AG, Coºkuner SA, Bayramoğlu G, Güdücüoğlu H, et al. (2014). Antimicrobial susceptibility and resistance mechanisms of methicillin resistant Staphylococcus aureus isolated from 12 Hospitals in Turkey. Ann Clin Microbiol Antimicrob 13: 44. DOI: 10.1186/s12941-014-0044-2. Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.