J Appl Biomed 19:133-141, 2021 | DOI: 10.32725/jab.2021.012

Acute effect of spinal cord stimulation on autonomic nervous system function in patients with heart failure

Jan Naar1, *, Deborah Jaye2, Petr Neužil1, Petr Doškář1, Filip Málek1, Bengt Linderoth3, Göran Lind3, Marcus Ståhlberg3
1 Na Homolce Hospital, Department of Cardiology, Prague, Czech Republic
2 Medtronic Plc, Cardiac Rhythm and Heart Failure, Minneapolis, USA
3 Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden

Aims: To test the hypothesis that spinal cord stimulation (SCS) acutely improves heart rate variability (HRV) and baroreceptor sensitivity (BRS) in patients with heart failure (HF).

Methods: SCS (15 minutes) was delivered in four different settings: 90% of maximal tolerated stimulation amplitude (MTA) targeting the T1-T4 spinal cord segments (SCS90T1-4), 60% of MTA (SCS60T1-4), 90% of MTA with cranial (SCS90CR) and caudal (SCS90CA) electrode configuration. HRV and BRS were recorded continuously and stimulation was compared to device off.

Results: Fifteen HF patients were included. SCS90T1-4 did not change the standard deviation of intervals between normal beats (SDNN, p = 0.90), BRS (p = 0.55) or other HRV parameters. In patients with baseline SDNN <50 ms, SCS90T1-4 significantly increased SDNN (p = 0.004).

Conclusions: Acute SCS at 60-90% of MTA targeting upper thoracic spinal cord segments does not improve autonomic balance or baroreceptor sensitivity in unselected patients with heart failure but may improve HRV in patients with low SDNN.

Keywords: Baroreceptor sensitivity; Heart failure; Heart rate variability; Spinal cord stimulation
Grants and funding:

This work was supported by the Ministry of Health, Czech Republic, conceptual development of research organization (NHH, 00023884), Stockholm County Council, Sweden (Project#: 108105) and an institutional research grant from Medtronic, Plc.

Conflicts of interest:

The authors Jan Naar, Petr Neužil, Petr Doškář, Filip Málek, Bengt Linderoth and Göran Lind declare that they have no conflict of interests. Deborah Jaye is an employee of Medtronic, Plc. Marcus Ståhlberg has received speakers’ honorarium from Medtronic, Plc.

Received: October 8, 2020; Revised: April 17, 2021; Accepted: May 5, 2021; Prepublished online: May 18, 2021; Published: September 17, 2021  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Naar J, Jaye D, Neužil P, Doškář P, Málek F, Linderoth B, et al.. Acute effect of spinal cord stimulation on autonomic nervous system function in patients with heart failure. J Appl Biomed. 2021;19(3):133-141. doi: 10.32725/jab.2021.012. PubMed PMID: 34907756.
Download citation

Attachments

Download fileJAB_Naar_1417_012_Suppl.pdf

File size: 822.75 kB

References

  1. Agostoni P, Cattadori G (2009). Noninvasive cardiac output measurement: A new tool in heart failure. Cardiology 114(4): 244-246. DOI: 10.1159/000232406. Go to original source... Go to PubMed...
  2. Anselmino M, Ravera L, De Luca A, Capriolo M, Bordese R, Trevi GP, Grimaldi R (2009). Spinal cord stimulation and 30-minute heart rate variability in refractory angina patients. Pacing Clin Electrophysiol 32(1): 37-42. DOI: 10.1111/j.1540-8159.2009.02174.x. Go to original source... Go to PubMed...
  3. Azevedo ER, Parker JD (1999). Parasympathetic control of cardiac sympathetic activity: normal ventricular function versus congestive heart failure. Circulation 100(3): 274-279. DOI: 10.1161/01.cir.100.3.274. Go to original source... Go to PubMed...
  4. Bernstein SA, Wong B, Vasquez C, Rosenberg SP, Rooke R, Kuznekoff LM, et al. (2012). Spinal cord stimulation protects against atrial fibrillation induced by tachypacing. Heart Rhythm 9(9): 1426-1433.e3. Go to original source... Go to PubMed...
  5. Cardinal R, Ardell JL, Linderoth B, Vermeulen M, Foreman RD, Armour JA (2004). Spinal cord activation differentially modulates ischaemic electrical responses to different stressors in canine ventricles. Auton Neurosci 111(1): 37-47. DOI: 10.1016/j.autneu.2004.02.005. Go to original source... Go to PubMed...
  6. Foreman RD, Linderoth B, Ardell JL, Barron KW, Chandler MJ, Hull SS, Jr., et al. (2000). Modulation of intrinsic cardiac neurons by spinal cord stimulation: implications for its therapeutic use in angina pectoris. Cardiovasc Res 47(2): 367-375. DOI: 10.1016/s0008-6363(00)00095-x. Go to original source... Go to PubMed...
  7. Goldstein DS, Bentho O, Park M-Y, Sharabi Y (2011). Low-frequency power of heart rate variability is not a measure of cardiac sympathetic tone but may be a measure of modulation of cardiac autonomic outflows by baroreflexes. Exp Physiol 96(12): 1255-1261. DOI: 10.1113/expphysiol.2010.056259. Go to original source... Go to PubMed...
  8. Hadase M, Azuma A, Zen K, Asada S, Kawasaki T, Kamitani T, et al. (2004). Very low frequency power of heart rate variability is a powerful predictor of clinical prognosis in patients with congestive heart failure. Circ J 68(4): 343-347. DOI: 10.1253/circj.68.343. Go to original source... Go to PubMed...
  9. Hayano J, Yuda E (2019). Pitfalls of assessment of autonomic function by heart rate variability. J Physiol Anthropol 38(1): 3. DOI: 10.1186/s40101-019-0193-2. Go to original source... Go to PubMed...
  10. Heart rate variability: standards of measurement, physiological interpretation, and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology (1996). Eur Heart J 17: 354-381.
  11. Issa ZF, Zhou X, Ujhelyi MR, Rosenberger J, Bhakta D, Groh WJ, et al. (2005). Thoracic spinal cord stimulation reduces the risk of ischemic ventricular arrhythmias in a postinfarction heart failure canine model. Circulation 111(24): 3217-3720. DOI: 10.1161/CIRCULATIONAHA.104.507897. Go to original source... Go to PubMed...
  12. Jacobson AF, Senior R, Cerqueira MD, Wong ND, Thomas GS, Lopez VA, et al. (2010). Myocardial iodine-123 meta-iodobenzylguanidine imaging and cardiac events in heart failure. Results of the prospective ADMIRE-HF (AdreView Myocardial Imaging for Risk Evaluation in Heart Failure) study. J Am Coll Cardiol 55(20): 2212-2221. DOI: 10.1016/j.jacc.2010.01.014. Go to original source... Go to PubMed...
  13. La Rovere MT, Pinna GD, Raczak G (2008). Baroreflex sensitivity: measurement and clinical implications. Ann Noninvasive Electrocardiol 13(2): 191-207. DOI: 10.1111/j.1542-474X.2008.00219.x. Go to original source... Go to PubMed...
  14. Linderoth B, Foreman RD (1999). Physiology of spinal cord stimulation: review and update. Neuromodulation 2(3): 150-164. DOI: 10.1046/j.1525-1403.1999.00150.x. Go to original source... Go to PubMed...
  15. Liu Y, Yue W-S, Liao S-Y, Zhang Y, Au K-W, Shuto C, et al. (2012). Thoracic spinal cord stimulation improves cardiac contractile function and myocardial oxygen consumption in a porcine model of ischemic heart failure. J Cardiovasc Electrophysiol 23(5): 534-540. DOI: 10.1111/j.1540-8167.2011.02230.x. Go to original source... Go to PubMed...
  16. Lopshire JC, Zipes DP (2014). Spinal cord stimulation for heart failure: preclinical studies to determine optimal stimulation parameters for clinical efficacy. J Cardiovasc Transl Res 7(3): 321-329. DOI: 10.1007/s12265-014-9547-7. Go to original source... Go to PubMed...
  17. Lopshire JC, Zhou X, Dusa C, Ueyama T, Rosenberger J, Courtney N, et al. (2009). Spinal cord stimulation improves ventricular function and reduces ventricular arrhythmias in a canine postinfarction heart failure model. Circulation 120(4): 286-294. DOI: 10.1161/CIRCULATIONAHA.108.812412. Go to original source... Go to PubMed...
  18. Moore R, Groves D, Nolan J, Scutt D, Pumprla J, Chester MR (2004). Altered short term heart rate variability with spinal cord stimulation in chronic refractory angina: evidence for the presence of procedure related cardiac sympathetic blockade. Heart 90(2): 211-212. DOI: 10.1136/hrt.2002.002998. Go to original source... Go to PubMed...
  19. Mortara A, La Rovere MT, Pinna GD, Prpa A, Maestri R, Febo O, et al. (1997). Arterial baroreflex modulation of heart rate in chronic heart failure: clinical and hemodynamic correlates and prognostic implications. Circulation 96(10): 3450-3458. DOI: 10.1161/01.cir.96.10.3450. Go to original source... Go to PubMed...
  20. Naar J, Jaye D, Linde C, Neužil P, Doškář P, Málek F, et al. (2017a). Effects of Spinal Cord Stimulation on Cardiac Sympathetic Nerve Activity in Patients with Heart Failure. Pacing Clin Electrophysiol 40(5): 504-513. DOI: 10.1111/pace.13050. Go to original source... Go to PubMed...
  21. Naar J, Jaye D, Linde C, Neužil P, Doškář P, Málek F, et al. (2017b). Spinal cord stimulation in heart failure: effect on disease-associated biomarkers. Eur J Heart Fail 19(2): 283-286. DOI: 10.1002/ejhf.702. Go to original source... Go to PubMed...
  22. Nakata T, Nakajima K, Yamashina S, Yamada T, Momose M, Kasama S, et al. (2013). A pooled analysis of multicenter cohort studies of (123) I-mIBG imaging of sympathetic innervation for assessment of long-term prognosis in heart failure. JACC Cardiovasc Imaging 6(7): 772-784. DOI: 10.1016/j.jcmg.2013.02.007. Go to original source... Go to PubMed...
  23. Odenstedt J, Linderoth B, Bergfeldt L, Ekre O, Grip L, Mannheimer C, Andrell P (2014). Spinal cord stimulation effects on myocardial ischemia, infarct size, ventricular arrhythmia, and noninvasive electrophysiology in a porcine ischemia-reperfusion model. Heart Rhythm 8(6): 892-898. DOI: 10.1016/j.hrthm.2011.01.029. Go to original source... Go to PubMed...
  24. Osterziel KJ, Hänlein D, Willenbrock R, Eichhorn C, Luft F, Dietz R (1995). Baroreflex sensitivity and cardiovascular mortality in patients with mild to moderate heart failure. Br Heart J 73(6): 517-522. DOI: 10.1136/hrt.73.6.517. Go to original source... Go to PubMed...
  25. Packer M (1992). The neurohormonal hypothesis: a theory to explain the mechanism of disease progression in heart failure. J Am Coll Cardiol 20(1): 248-254. DOI: 10.1016/0735-1097(92)90167-l. Go to original source... Go to PubMed...
  26. Parlow J, Viale JP, Annat G, Hughson R, Quintin L (1995). Spontaneous cardiac baroreflex in humans. Comparison with drug-induced responses. Hypertension 25(5): 1058-1068. DOI: 10.1161/01.hyp.25.5.1058. Go to original source... Go to PubMed...
  27. Rahman F, Pechnik S, Gross D, Sewell L, Goldstein DS (2011). Low frequency power of heart rate variability reflects baroreflex function, not cardiac sympathetic innervation. Clin Auton Res 21(3): 133-141. DOI: 10.1007/s10286-010-0098-y. Go to original source... Go to PubMed...
  28. Simpson EL, Duenas A, Holmes MW, Papaioannou D, Chilcott J (2009). Spinal cord stimulation for chronic pain of neuropathic or ischaemic origin: systematic review and economic evaluation. Health Technol Assess 13(17): iii, ix-x, 1-154. DOI: 10.3310/hta13170. Go to original source... Go to PubMed...
  29. Tse H-F, Turner S, Sanders P, Okuyama Y, Fujiu K, Cheung C-W, et al. (2015). Thoracic Spinal Cord Stimulation for Heart Failure as a Restorative Treatment (SCS HEART study): first-in-man experience. Heart Rhythm 12(3): 588-595. DOI: 10.1016/j.hrthm.2014.12.014. Go to original source... Go to PubMed...
  30. Wang W, Chen JS, Zucker IH (1990). Carotid sinus baroreceptor sensitivity in experimental heart failure. Circulation 81(6): 1959-1966. DOI: 10.1161/01.cir.81.6.1959. Go to original source... Go to PubMed...
  31. Wang Y-P, Cheng Y-J, Huang C-L (2004). Spontaneous baroreflex measurement in the assessment of cardiac vagal control. Clin Auton Res 14(3): 189-193. DOI: 10.1007/s10286-004-0192-0. Go to original source... Go to PubMed...
  32. Zipes DP, Neuzil P, Theres H, Caraway D, Mann DL, Mannheimer C, et al. (2016). Determining the Feasibility of Spinal Cord Neuromodulation for the Treatment of Chronic Systolic Heart Failure: The DEFEAT-HF Study. JACC Heart Fail 4(2): 129-136. DOI: 10.1016/j.jchf.2015.10.006. Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.