J Appl Biomed 19:159-169, 2021 | DOI: 10.32725/jab.2021.016
A-769662 stimulates the differentiation of bone marrow-derived mesenchymal stem cells into osteoblasts via AMP-activated protein kinase-dependent mechanism
- King Faisal University, College of Science, Biological Sciences Department, Al-Ahsa, Saudi Arabia
AMP-activated protein kinase (AMPK) signaling shows an important role in energy metabolism and has recently been involved in osteogenic and adipogenic differentiation. In this study we aimed to investigate the role of AMPK activator, A-769662, in regulating the differentiation of mesenchymal stem cells derived from bone marrow (BMSCs) into osteoblastic and adipocytic cell lineage. The effect of A-769662 on osteogenesis was assessed by quantitative alkaline phosphatase (ALP) activity, matrix mineralization stained with Alizarin red, and gene expression analysis by quantitative polymerase chain reaction (qPCR). Adipogenesis was determined by Oil Red O staining for fat droplets and qPCR analysis of adipogenic markers. A-769662 activated the phosphorylation of AMPKα1 during the osteogenesis of mBMSCs as revealed by western blot analysis. A-769662 promoted the early stage of the commitment of mouse (m) BMSCs differentiation into osteoblasts, while inhibiting their differentiation into adipocytes in a dose-dependent manner. The effects of A-769662 on stimulating osteogenesis and inhibiting adipogenesis of mBMSCs were significantly eliminated in the presence of either AMPKα1 siRNA or Compound C, an inhibitor of AMPK pathway. In conclusion, we identified A-769662 as a new compound that promotes the commitment of BMSCs into osteoblasts versus adipocytes via AMPK-dependent mechanism. Thus our data show A-769662 as a potential osteo-anabolic drug for treatment of osteoporosis.
Keywords: A-769662; Adipocyte; AMPK; BMSC; Osteoblast; Stem cells
Grants and funding:
This work was funded by the Deanship of Scientific Research at King Faisal University, Saudi Arabia (Grant No. 180076).
Conflicts of interest:
The authors declare that they have no competing interests.
Received: December 30, 2020; Revised: June 18, 2021; Accepted: June 21, 2021; Prepublished online: July 1, 2021; Published: September 17, 2021 Show citation
ACS | AIP | APA | ASA | Harvard | Chicago | Chicago Notes | IEEE | ISO690 | MLA | NLM | Turabian | Vancouver |
References
- Abdallah BM, Kassem M (2008). Human mesenchymal stem cells: from basic biology to clinical applications. Gene Ther. 15(2): 109-116. DOI: 10.1038/sj.gt.3303067.
Go to original source...
Go to PubMed...
- Abdallah BM, Alzahrani AM, Kassem M (2018). Secreted Clusterin protein inhibits osteoblast differentiation of bone marrow mesenchymal stem cells by suppressing ERK1/2 signaling pathway. Bone 110: 221-229. DOI: 10.1016/j.bone.2018.02.018.
Go to original source...
Go to PubMed...
- Abdallah BM, Jafari A, Zaher W, Qiu W, Kassem M (2015). Skeletal (stromal) stem cells: an update on intracellular signaling pathways controlling osteoblast differentiation. Bone 70: 28-36. DOI: 10.1016/j.bone.2014.07.028.
Go to original source...
Go to PubMed...
- Amantea CM, Kim WK, Meliton V, Tetradis S, Parhami F (2008). Oxysterol-induced osteogenic differentiation of marrow stromal cells is regulated by Dkk-1 inhibitable and PI3-kinase mediated signaling. J Cell Biochem 105(2): 424-436. DOI: 10.1002/jcb.21840.
Go to original source...
Go to PubMed...
- Babkov DA, Zhukowskaya ON, Borisov AV, Babkova VA, Sokolova EV, Brigadirova AA, et al. (2019). Towards multi-target antidiabetic agents: Discovery of biphenyl-benzimidazole conjugates as AMPK activators. Bioorg Med Chem Lett 29(17): 2443-2447. DOI: 10.1016/j.bmcl.2019.07.035.
Go to original source...
Go to PubMed...
- Bennett CN, Longo KA, Wright WS, Suva LJ, Lane TF, Hankenson KD, MacDougald OA (2005). Regulation of osteoblastogenesis and bone mass by Wnt10b. Proc Natl Acad Sci U S A 102(9): 3324-3329. DOI: 10.1073/pnas.0408742102.
Go to original source...
Go to PubMed...
- Bianco P, Robey PG (2015). Skeletal stem cells. Development 142(6): 1023-1027. DOI: 10.1242/dev.102210.
Go to original source...
Go to PubMed...
- Chava S, Chennakesavulu S, Gayatri BM, Reddy ABM (2018). A novel phosphorylation by AMP-activated kinase regulates RUNX2 from ubiquitination in osteogenesis over adipogenesis. Cell Death Dis 9(7): 754. DOI: 10.1038/s41419-018-0791-7.
Go to original source...
Go to PubMed...
- Chen G, Deng C, Li Y-P (2012). TGF-beta and BMP signaling in osteoblast differentiation and bone formation. Int J Biol Sci 8(2): 272-288. DOI: 10.7150/ijbs.2929.
Go to original source...
Go to PubMed...
- Chen SC, Brooks R, Houskeeper J, Bremner SK, Dunlop J, Viollet B, et al. (2017). Metformin suppresses adipogenesis through both AMP-activated protein kinase (AMPK)-dependent and AMPK-independent mechanisms. Mol Cell Endocrinol 440: 57-68. DOI: 10.1016/j.mce.2016.11.011.
Go to original source...
Go to PubMed...
- Cool B, Zinker B, Chiou W, Kifle L, Cao N, Perham M, et al. (2006). Identification and characterization of a small molecule AMPK activator that treats key components of type 2 diabetes and the metabolic syndrome. Cell Metab 3(6): 403-416. DOI: 10.1016/j.cmet.2006.05.005.
Go to original source...
Go to PubMed...
- Corton JM, Gillespie JG, Hawley SA, Hardie DG (1995). 5-aminoimidazole-4-carboxamide ribonucleoside. A specific method for activating AMP-activated protein kinase in intact cells? Eur J Biochem 229(2): 558-565. DOI: 10.1111/j.1432-1033.1995.tb20498.x.
Go to original source...
Go to PubMed...
- Day EA, Ford RJ, Steinberg GR (2017). AMPK as a Therapeutic Target for Treating Metabolic Diseases. Trends Endocrinol Metab 28(8): 545-560. DOI: 10.1016/j.tem.2017.05.004.
Go to original source...
Go to PubMed...
- de Meester C, Timmermans AD, Balteau M, Ginion A, Roelants V, Noppe G, et al. (2014). Role of AMP-activated protein kinase in regulating hypoxic survival and proliferation of mesenchymal stem cells. Cardiovasc Res 101: 20-29. DOI: 10.1093/cvr/cvt227.
Go to original source...
Go to PubMed...
- Ge C, Xiao G, Jiang D, Franceschi RT (2007). Critical role of the extracellular signal-regulated kinase-MAPK pathway in osteoblast differentiation and skeletal development. J Cell Biol 176(5): 709-718. DOI: 10.1083/jcb.200610046.
Go to original source...
Go to PubMed...
- Gimble JM, Zvonic S, Floyd ZE, Kassem M, Nuttall ME (2006). Playing with bone and fat. J Cell Biochem 98(2): 251-266. DOI: 10.1002/jcb.20777.
Go to original source...
Go to PubMed...
- Goransson O, McBride A, Hawley SA, Ross FA, Shpiro N, Foretz M, et al. (2007). Mechanism of action of A-769662, a valuable tool for activation of AMP-activated protein kinase. J Biol Chem 282(45): 32549-32560. DOI: 10.1074/jbc.M706536200.
Go to original source...
Go to PubMed...
- Hardie DG (2007). AMP-activated protein kinase as a drug target. Annu Rev Pharmacol Toxicol 47: 185-210. DOI: 10.1146/annurev.pharmtox.47.120505.105304.
Go to original source...
Go to PubMed...
- Hardie DG (2014). AMP-activated protein kinase: maintaining energy homeostasis at the cellular and whole-body levels. Annu Rev Nutr 34: 31-55. DOI: 10.1146/annurev-nutr-071812-161148.
Go to original source...
Go to PubMed...
- Hardouin P, Rharass T, Lucas S (2016). Bone Marrow Adipose Tissue: To Be or Not To Be a Typical Adipose Tissue? Front Endocrinol (Lausanne) 7: 85. DOI: 10.3389/fendo.2016.00085.
Go to original source...
Go to PubMed...
- Jafari A, Siersbaek MS, Chen L, Qanie D, Zaher W, Abdallah BM, Kassem M (2015). Pharmacological Inhibition of Protein Kinase G1 Enhances Bone Formation by Human Skeletal Stem Cells Through Activation of RhoA-Akt Signaling. Stem Cells 33(7): 2219-2231. DOI: 10.1002/stem.2013.
Go to original source...
Go to PubMed...
- Kanazawa I, Yamaguchi T, Yano S, Yamauchi M, Sugimoto T (2009). Activation of AMP kinase and inhibition of Rho kinase induce the mineralization of osteoblastic MC3T3-E1 cells through endothelial NOS and BMP-2 expression. Am J Physiol Endocrinol Metab 296(1): E139-146. DOI: 10.1152/ajpendo.90677.2008.
Go to original source...
Go to PubMed...
- Kanno T, Takahashi T, Tsujisawa T, Ariyoshi W, Nishihara T (2007). Mechanical stress-mediated Runx2 activation is dependent on Ras/ERK1/2 MAPK signaling in osteoblasts. J Cell Biochem 101(5): 1266-1277. DOI: 10.1002/jcb.21249.
Go to original source...
Go to PubMed...
- Kim E-K, Lim S, Park J-M, Seo JK, Kim JH, Kim KT, et al. (2012). Human mesenchymal stem cell differentiation to the osteogenic or adipogenic lineage is regulated by AMP-activated protein kinase. J Cell Physiol 227(4): 1680-1687. DOI: 10.1002/jcp.22892.
Go to original source...
Go to PubMed...
- Kim J, Yang G, Kim Y, Kim J, Ha J (2016). AMPK activators: mechanisms of action and physiological activities. Exp Mol Med 48: e224. DOI: 10.1038/emm.2016.16.
Go to original source...
Go to PubMed...
- Li Y, Jin D, Xie W, Wen L, Chen W, Xu J, et al. (2018). PPAR-gamma and Wnt Regulate the Differentiation of MSCs into Adipocytes and Osteoblasts Respectively. Curr Stem Cell Res Ther 13(3): 185-192. DOI: 10.2174/1574888X12666171012141908.
Go to original source...
Go to PubMed...
- Luby AO, Ranganathan K, Lynn JV, Nelson NS, Donneys A, Buchman SR (2019). Stem Cells for Bone Regeneration: Current State and Future Directions. J Craniofac Surg 30(3): 730-735. DOI: 10.1097/SCS.0000000000005250.
Go to original source...
Go to PubMed...
- Mihaylova MM, Shaw RJ (2011). The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat Cell Biol 13(9): 1016-1023. DOI: 10.1038/ncb2329.
Go to original source...
Go to PubMed...
- Molinuevo MS, Schurman L, McCarthy AD, Cortizo AM, Tolosa MJ, Gangoiti MV, et al. (2010). Effect of metformin on bone marrow progenitor cell differentiation: in vivo and in vitro studies. J Bone Miner Res 25(2): 211-221. DOI: 10.1359/jbmr.090732.
Go to original source...
Go to PubMed...
- Rharass T, Lucas S (2018). MECHANISMS IN ENDOCRINOLOGY: Bone marrow adiposity and bone, a bad romance? Eur J Endocrinol 179(4): R165-R182. DOI: 10.1530/EJE-18-0182.
Go to original source...
Go to PubMed...
- Sanders MJ, Ali ZS, Hegarty BD, Heath R, Snowden MA, Carling D (2007). Defining the mechanism of activation of AMP-activated protein kinase by the small molecule A-769662, a member of the thienopyridone family. J Biol Chem 282(45): 32539-32548. DOI: 10.1074/jbc.M706543200.
Go to original source...
Go to PubMed...
- Scott JW, Ling N, Issa SM, Dite TA, O'Brien MT, Chen ZP, et al. (2014). Small molecule drug A-769662 and AMP synergistically activate naive AMPK independent of upstream kinase signaling. Chem Biol 21(5): 619-627. DOI: 10.1016/j.chembiol.2014.03.006.
Go to original source...
Go to PubMed...
- Sedlinsky C, Molinuevo MS, Cortizo AM, Tolosa MJ, Felice JI, Sbaraglini ML, et al. (2011). Metformin prevents anti-osteogenic in vivo and ex vivo effects of rosiglitazone in rats. Eur J Pharmacol 668(3): 477-485. DOI: 10.1016/j.ejphar.2011.07.033.
Go to original source...
Go to PubMed...
- Shah M, Kola B, Bataveljic A, Arnett TR, Viollet B, Saxon L, et al. (2010). AMP-activated protein kinase (AMPK) activation regulates in vitro bone formation and bone mass. Bone 47(2): 309-319. DOI: 10.1016/j.bone.2010.04.596.
Go to original source...
Go to PubMed...
- Shen W, Chen J, Gantz M, Punyanitya M, Heymsfield SB, Gallagher D, et al. (2012). Ethnic and sex differences in bone marrow adipose tissue and bone mineral density relationship. Osteoporos Int 23(9): 2293-2301. DOI: 10.1007/s00198-011-1873-x.
Go to original source...
Go to PubMed...
- Suh JM, Gao X, McKay J, McKay R, Salo Z, Graff JM (2006). Hedgehog signaling plays a conserved role in inhibiting fat formation. Cell Metab 3(1): 25-34. DOI: 10.1016/j.cmet.2005.11.012.
Go to original source...
Go to PubMed...
- Taipaleenmaki H, Abdallah BM, Aldahmash A, Saamanen AM, Kassem M (2011). Wnt signalling mediates the cross-talk betweenbone marrow derived pre-adipocytic and pre-osteoblastic cell populations. Exp Cell Res 317(6): 745-756. DOI: 10.1016/j.yexcr.2010.12.015.
Go to original source...
Go to PubMed...
- Tamargo-Gomez I, Marino G (2018). AMPK: Regulation of Metabolic Dynamics in the Context of Autophagy. Int J Mol Sci 19(12): 3812. DOI: 10.3390/ijms19123812.
Go to original source...
Go to PubMed...
- Thirupathi A, Chang Y-Z (2019). Role of AMPK and its molecular intermediates in subjugating cancer survival mechanism. Life Sci 227: 30-38. DOI: 10.1016/j.lfs.2019.04.039.
Go to original source...
Go to PubMed...
- Towler MC, Hardie DG (2007). AMP-activated protein kinase in metabolic control and insulin signaling. Circ Res 100(3): 328-341. DOI: 10.1161/01.RES.0000256090.42690.05.
Go to original source...
Go to PubMed...
- Wang S, Song P, Zou M-H (2012). AMP-activated protein kinase, stress responses and cardiovascular diseases. Clin Sci (Lond) 122(12): 555-573. DOI: 10.1042/CS20110625.
Go to original source...
Go to PubMed...
- Wu L, Zhang L, Li B, Jiang H, Duan Y, Xie Z, et al. (2018). AMP-Activated Protein Kinase (AMPK) Regulates Energy Metabolismthrough Modulating Thermogenesis in Adipose Tissue. Front Physiol 9: 122. DOI: 10.3389/fphys.2018.00122.
Go to original source...
Go to PubMed...
- Zhao L, Hantash BM (2011). TGF-beta1 regulates differentiation of bone marrow mesenchymal stem cells. Vitam Horm 87: 127-141. DOI: 10.1016/B978-0-12-386015-6.00042-1.
Go to original source...
Go to PubMed...
- Zheng C, Chen J, Liu S, Jin Y (2019). Stem cell-based bone and dental regeneration: a view of microenvironmental modulation. Int J Oral Sci 11(3): 23. DOI: 10.1038/s41368-019-0060-3.
Go to original source...
Go to PubMed...
- Zhou Y, Wang D, Zhu Q, Gao X, Yang S, Xu A, Wu D (2009). Inhibitory effects of A-769662, a novel activator of AMP-activated protein kinase, on 3T3-L1 adipogenesis. Biol Pharm Bull 32(6): 993-998. DOI: 10.1248/bpb.32.993.
Go to original source...
Go to PubMed...
- Zhu Y, Zhou J, Ao R, Yu B (2014). A-769662 protects osteoblasts from hydrogen dioxide-induced apoptosis through activating of AMP-activated protein kinase (AMPK). Int J Mol Sci 15(6): 11190-11203. DOI: 10.3390/ijms150611190.
Go to original source...
Go to PubMed...
This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.