J Appl Biomed 19:190-201, 2021 | DOI: 10.32725/jab.2021.021

The NF-κB pathway is critically implicated in the oncogenic phenotype of human osteosarcoma cells

Bingyi Tan, Zenong Yuan, Qingyu Zhang, Xu Xiqiang, Jun Dong*
Shandong First Medical University, Shandong Provincial Hospital, Department of Orthopaedics, Jinan City, China

NF-κB is activated in a variety of human cancers. However, its role in osteosarcoma (OS) remains unknown. Here, we have elucidated the implication of NF-κB in the oncogenic phenotype of OS tumor cells. We reported that activation of NF-κB was a common event in the human OS. Inhibition of NF-κB using inhibitor Bay 11-7085 repressed proliferation, survival, migration, and invasion but increased apoptosis in 143B and MG63 OS cells, indicating that NF-κB is critically implicated in the oncogenesis of OS. Notably, Bay 11-7085 not only inactivated NF-κB but also reduced the phosphorylation of AKT via its induction of PTEN, suggesting the existence of a novel NF-κB/PTEN/PI3K/AKT axis. In vivo, Bay 11-7085 suppressed tumor growth in the bone by targeting NF-κB and AKT. Interestingly, combined treatment with Bay 11-7085 and the PI3K inhibitor, LY294002, triggered an augmented antitumor effect. Our results demonstrate that NF-κB potentiates the growth and aggressiveness of OS. Pharmacological inhibition of NF-κB represents a promising therapy for the treatment of OS.

Keywords: AKT; NF-κB; Osteosarcoma; Treatment
Grants and funding:

This study was supported by the Shandong Provincial Medical Technology & Development Program, China (2019WS459) to J.D.

Conflicts of interest:

There is no competing interest related to the manuscript.

Received: February 15, 2021; Revised: September 9, 2021; Accepted: September 23, 2021; Prepublished online: September 24, 2021; Published: December 6, 2021  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Tan B, Yuan Z, Zhang Q, Xiqiang X, Dong J. The NF-κB pathway is critically implicated in the oncogenic phenotype of human osteosarcoma cells. J Appl Biomed. 2021;19(4):190-201. doi: 10.32725/jab.2021.021. PubMed PMID: 34907738.
Download citation

References

  1. Aasen SN, Parajuli H, Hoang T, Feng Z, Stokke K, Wang J, et al. (2019). Effective Treatment of Metastatic Melanoma by Combining MAPK and PI3K Signaling Pathway Inhibitors. Int J Mol Sci 20(17): 4235. DOI: 10.3390/ijms20174235. Go to original source... Go to PubMed...
  2. Bai D, Ueno L, Vogt PK (2009). Akt-mediated regulation of NFkappaB and the essentialness of NFkappaB for the oncogenicity of PI3K and Akt. Int J Cancer 125: 2863-2870. DOI: 10.1002/ijc.24748. Go to original source... Go to PubMed...
  3. Bravo-Cordero JJ, Hodgson L, Condeelis J (2012). Directed cell invasion and migration during metastasis. Curr Opin Cell Biol 24: 277-283. DOI: 10.1016/j.ceb.2011.12.004. Go to original source... Go to PubMed...
  4. Dumble M, Crouthamel MC, Zhang SY, Schaber M, Levy D, Robell K, et al. (2014). Discovery of novel AKT inhibitors with enhanced anti-tumor effects in combination with the MEK inhibitor. PLoS One 9: e100880. DOI: 10.1371/journal.pone.0100880. Go to original source... Go to PubMed...
  5. Fishman P, Bar-Yehuda S, Madi L, Rath-Wolfson L, Ochaion A, Cohen S, Baharav E (2006). The PI3K-NF-kappaB signal transduction pathway is involved in mediating the anti-inflammatory effect of IB-MECA in adjuvant-induced arthritis. Arthritis Res Ther 8: R33. DOI: 10.1186/ar1887. Go to original source... Go to PubMed...
  6. Georgescu MM (2010). PTEN Tumor Suppressor Network in PI3K-Akt Pathway Control. Genes Cancer 1: 1170-1177. DOI: 10.1177/1947601911407325. Go to original source... Go to PubMed...
  7. Geryk-Hall M, Hughes DP (2009). Critical signaling pathways in bone sarcoma: candidates for therapeutic interventions. Curr Oncol Rep 11: 446-453. DOI: 10.1007/s11912-009-0061-z. Go to original source... Go to PubMed...
  8. Ghoneum A, Said N (2019). PI3K-AKT-mTOR and NFkappaB Pathways in Ovarian Cancer: Implications for Targeted Therapeutics. Cancers (Basel) 11(7): 949. DOI: 10.3390/cancers11070949. Go to original source... Go to PubMed...
  9. Gong T, Su X, Xia Q, Wang J, Kan S (2017). Expression of NF-kappaB and PTEN in osteosarcoma and its clinical significance. Oncol Lett 14: 6744-6748. DOI: 10.3892/ol.2017.6972. Go to original source... Go to PubMed...
  10. Gorlick R, Maris JM, Houghton PJ, Lock R, Carol H, Kurmasheva RT, et al. (2012). Testing of the Akt/PKB inhibitor MK-2206 by the Pediatric Preclinical Testing Program. Pediatr Blood Cancer 59: 518-524. DOI: 10.1002/pbc.23412. Go to original source... Go to PubMed...
  11. Hayden MS, Ghosh S (2014). Regulation of NF-kappaB by TNF family cytokines. Semin Immunol 26: 253-266. DOI: 10.1016/j.smim.2014.05.004. Go to original source... Go to PubMed...
  12. Hutti JE, Pfefferle AD, Russell SC, Sircar M, Perou CM, Baldwin AS (2012). Oncogenic PI3K mutations lead to NF-kappaB-dependent cytokine expression following growth factor deprivation. Cancer Res 72: 3260-3269. DOI: 10.1158/0008-5472.CAN-11-4141. Go to original source... Go to PubMed...
  13. Israel A (2010). The IKK complex, a central regulator of NF-kappaB activation. Cold Spring Harb Perspect Biol 2: a000158. DOI: 10.1101/cshperspect.a000158. Go to original source... Go to PubMed...
  14. Iyer SV, Ranjan A, Elias HK, Parrales A, Sasaki H, Roy BC, et al. (2016). Genome-wide RNAi screening identifies TMIGD3 isoform1 as a suppressor of NF-kappaB and osteosarcoma progression. Nat Commun 7: 13561. DOI: 10.1038/ncomms13561. Go to original source... Go to PubMed...
  15. Jiang C, Ma S, Hu R, Wang X, Li M, Tian F, et al. (2018). Effect of CXCR4 on Apoptosis in Osteosarcoma Cells via the PI3K/Akt/NF-kappabeta Signaling Pathway. Cell Physiol Biochem 46: 2250-2260. DOI: 10.1159/000489593. Go to original source... Go to PubMed...
  16. Jin Y, Liu L, Chen B, Bai Y, Zhang F, Li Q, et al. (2017). Involvement of the PI3K/Akt/NF-kappaB Signaling Pathway in the Attenuation of Severe Acute Pancreatitis-Associated Acute Lung Injury by Sedum sarmentosum Bunge Extract. Biomed Res Int 2017: 9698410. DOI: 10.1155/2017/9698410. Go to original source... Go to PubMed...
  17. Kaltschmidt B, Kaltschmidt C, Hehner SP, Droge W, Schmitz ML (1999). Repression of NF-kappaB impairs HeLa cell proliferation by functional interference with cell cycle checkpoint regulators. Oncogene 18: 3213-3225. DOI: 10.1038/sj.onc.1202657. Go to original source... Go to PubMed...
  18. Kunnumakkara AB, Shabnam B, Girisa S, Harsha C, Banik K, Devi TB, et al. (2020). Inflammation, NF-kappaB, and Chronic Diseases: How are They Linked? Crit Rev Immunol 40: 1-39. DOI: 10.1615/CritRevImmunol.2020033210. Go to original source... Go to PubMed...
  19. Kushlinskii NE, Fridman MV, Braga EA (2016). Molecular Mechanisms and microRNAs in Osteosarcoma Pathogenesis. Biochemistry (Mosc) 81: 315-328. DOI: 10.1134/S0006297916040027. Go to original source... Go to PubMed...
  20. Labbozzetta M, Notarbartolo M, Poma P (2020). Can NF-kappaB Be Considered a Valid Drug Target in Neoplastic Diseases? Our Point of View. Int J Mol Sci 21: 3070. DOI: 10.3390/ijms21093070. Go to original source... Go to PubMed...
  21. Li B, Cheung PY, Wang X, Tsao SW, Ling MT, Wong YC, Cheung AL (2007). Id-1 activation of PI3K/Akt/NFkappaB signaling pathway and its significance in promoting survival of esophageal cancer cells. Carcinogenesis 28: 2313-2320. DOI: 10.1093/carcin/bgm152. Go to original source... Go to PubMed...
  22. Li F, Shanmugam MK, Chen L, Chatterjee S, Basha J, Kumar AP, Kundu TK, Sethi G (2013). Garcinol, a polyisoprenylated benzophenone modulates multiple proinflammatory signaling cascades leading to the suppression of growth and survival of head and neck carcinoma. Cancer Prev Res (Phila) 6: 843-854. DOI: 10.1158/1940-6207.CAPR-13-0070. Go to original source... Go to PubMed...
  23. Liang CC, Park AY, Guan JL (2007). In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nat Protoc 2: 329-333. DOI: 10.1038/nprot.2007.30. Go to original source... Go to PubMed...
  24. Liao D, Zhong L, Duan T, Zhang RH, Wang X, Wang G, et al. (2015). Aspirin Suppresses the Growth and Metastasis of Osteosarcoma through the NF-kappaB Pathway. Clin Cancer Res 21: 5349-5359. DOI: 10.1158/1078-0432.CCR-15-0198. Go to original source... Go to PubMed...
  25. Liu W, Jiang D, Gong F, Huang Y, Luo Y, Rong Y, et al. (2020). miR-210-5p promotes epithelial-mesenchymal transition by inhibiting PIK3R5 thereby activating oncogenic autophagy in osteosarcoma cells. Cell Death Dis 11: 93. DOI: 10.1038/s41419-020-2270-1. Go to original source... Go to PubMed...
  26. Luo JL, Kamata H, Karin M (2005). IKK/NF-kappaB signaling: balancing life and death - a new approach to cancer therapy. J Clin Invest 115: 2625-2632. DOI: 10.1172/JCI26322. Go to original source... Go to PubMed...
  27. Miwa S, Sugimoto N, Yamamoto N, Shirai T, Nishida H, Hayashi K, et al. (2012). Caffeine induces apoptosis of osteosarcoma cells by inhibiting AKT/mTOR/S6K, NF-kappaB and MAPK pathways. Anticancer Res 32: 3643-3649. DOI: 10.3892/ijo.2011.1051. Go to original source... Go to PubMed...
  28. Oeckinghaus A, Ghosh S (2009). The NF-kappaB family of transcription factors and its regulation. Cold Spring Harb Perspect Biol 1: a000034. DOI: 10.1101/cshperspect.a000034. Go to original source... Go to PubMed...
  29. Papa A, Pandolfi PP (2019). The PTEN(-)PI3K Axis in Cancer. Biomolecules 9(4): 153. DOI: 10.3390/biom9040153. Go to original source... Go to PubMed...
  30. Piva R, Penolazzi L, Borgatti M, Lampronti I, Lambertini E, Torreggiani E, Gambari R (2009). Apoptosis of human primary osteoclasts treated with molecules targeting nuclear factor-kappaB. Ann N Y Acad Sci 1171: 448-456. DOI: 10.1111/j.1749-6632.2009.04906.x. Go to original source... Go to PubMed...
  31. Polivka J, Jr., Janku F (2014). Molecular targets for cancer therapy in the PI3K/AKT/mTOR pathway. Pharmacol Ther 142: 164-175. DOI: 10.1016/j.pharmthera.2013.12.004. Go to original source... Go to PubMed...
  32. Prahallad A, Bernards R (2016). Opportunities and challenges provided by crosstalk between signalling pathways in cancer. Oncogene 35: 1073-1079. DOI: 10.1038/onc.2015.151. Go to original source... Go to PubMed...
  33. Puar YR, Shanmugam MK, Fan L, Arfuso F, Sethi G, Tergaonkar V (2018). Evidence for the Involvement of the Master Transcription Factor NF-kappaB in Cancer Initiation and Progression. Biomedicines 6(3): 82. DOI: 10.3390/biomedicines6030082. Go to original source... Go to PubMed...
  34. Ritch SJ, Brandhagen BN, Goyeneche AA, Telleria CM (2019). Advanced assessment of migration and invasion of cancer cellsin response to mifepristone therapy using double fluorescence cytochemical labeling. BMC Cancer 19: 376. DOI: 10.1186/s12885-019-5587-3. Go to original source... Go to PubMed...
  35. Smith SM, Lyu YL, Cai L (2014). NF-kappaB affects proliferation and invasiveness of breast cancer cells by regulating CD44 expression. PLoS One 9: e106966. DOI: 10.1371/journal.pone.0106966. Go to original source... Go to PubMed...
  36. Tahtamouni L, Ahram M, Koblinski J, Rolfo C (2019). Molecular Regulation of Cancer Cell Migration, Invasion, and Metastasis. Anal Cell Pathol (Amst) 2019: 1356508. DOI: 10.1155/2019/1356508. Go to original source... Go to PubMed...
  37. Tang QL, Xie XB, Wang J, Chen Q, Han AJ, Zou CY, et al. (2012). Glycogen synthase kinase-3beta, NF-kappaB signaling, and tumorigenesis of human osteosarcoma. J Natl Cancer Inst 104: 749-763. DOI: 10.1093/jnci/djs210. Go to original source... Go to PubMed...
  38. Vallabhapurapu S, Karin M (2009). Regulation and function of NF-kappaB transcription factors in the immune system. Annu Rev Immunol 27: 693-733. DOI: 10.1146/annurev.immunol.021908.132641. Go to original source... Go to PubMed...
  39. Vasudevan KM, Gurumurthy S, Rangnekar VM (2004). Suppression of PTEN expression by NF-kappa B prevents apoptosis. Mol Cell Biol 24: 1007-1021. DOI: 10.1128/MCB.24.3.1007-1021.2004. Go to original source... Go to PubMed...
  40. Wei X, Xu L, Jeddo SF, Li K, Li X, Li J (2020). MARK2 enhances cisplatin resistance via PI3K/AKT/NF-kappaB signaling pathway in osteosarcoma cells. Am J Transl Res 12: 1807-1823.
  41. Xi Y, Chen Y (2017). PTEN Plays Dual Roles As a Tumor Suppressor in Osteosarcoma Cells. J Cell Biochem 118: 2684-2692. DOI: 10.1002/jcb.25888. Go to original source... Go to PubMed...
  42. Xia Y, Shen S, Verma IM (2014). NF-kappaB, an active player in human cancers. Cancer Immunol Res 2: 823-830. DOI: 10.1158/2326-6066.CIR-14-0112. Go to original source... Go to PubMed...
  43. Zhang J, Yu XH, Yan YG, Wang C, Wang WJ (2015). PI3K/Akt signaling in osteosarcoma. Clin Chim Acta 444: 182-192. DOI: 10.1016/j.cca.2014.12.041. Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.