J Appl Biomed 19:202-209, 2021 | DOI: 10.32725/jab.2021.024
Rosmarinic acid suppresses inflammation, angiogenesis, and improves paclitaxel induced apoptosis in a breast cancer model via NF3 κB-p53-caspase-3 pathways modulation
- 1 Damanhour University, Faculty of Pharmacy, Department of Biochemistry, Behira, Egypt
- 2 Damanhour University, Faculty of Pharmacy, Department of Pharmacology and Toxicology, Behira, Egypt
Rosmarinic acid is a natural polyphenolic compound that is found in different plant species and used for different medicinal purposes. This study aimed to investigate the chemo-preventive effect of rosmarinic acid and evaluate its antitumor efficacy alone or in combination with Paclitaxel in breast cancer mice model. Ehrlich induced mice mammary solid tumor model was used in the study. Mice were treated with oral rosmarinic acid and intraperitoneal Paclitaxel. Inflammation, angiogenesis, and apoptosis were checked. Enzyme linked immunosorbent assay (ELISA), quantitative real time PCR, and immunohistochemical methods were performed. Rosmarinic acid used prior to tumor induction suppressed NF-κB, TNF-α, vascular endothelial growth factor (VEGF) serum levels, and VEGF receptors. It also triggered apoptosis by restoring the levels of P53, Bcl-2, Bax, and caspase-3. Furthermore, in Ehrlich solid tumor mice, rosmarinic acid, and/or Paclitaxel significantly suppressed tumor growth with an increase in apoptotic markers P53 and Caspase-3 levels, and suppressed the Bcl2/Bax ratio. Rosmarinic acid exerted chemo-preventive and therapeutic potential alone or in combination with Paclitaxel. Moreover, rosmarinic acid targets numerous signaling pathways associated with breast cancer.
Keywords: Angiogenesis; Apoptosis; Breast cancer; Inflammation; Paclitaxel; Rosmarinic acid
Grants and funding:
This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.
Conflicts of interest:
The authors report no conflict of interests.
Received: May 22, 2021; Revised: October 18, 2021; Accepted: October 25, 2021; Prepublished online: October 27, 2021; Published: December 6, 2021 Show citation
ACS | AIP | APA | ASA | Harvard | Chicago | Chicago Notes | IEEE | ISO690 | MLA | NLM | Turabian | Vancouver |
References
- Abd-Alhaseeb MM, Zaitone SA, Abou-El-Ela SH, Moustafa YM (2013). Assessment of the Safety of Olmesartan in Combination with Sorafenib in Mice Bearing Ehrlich's Ascites Carcinoma. J Cancer Ther 4(8): 1355-1361. DOI: 10.4236/jct.2013.48160.
Go to original source...
- Abd-Alhaseeb MM, Zaitone SA, Abou-El-Ela SH, Moustafa YM (2014). Olmesartan Potentiates the Anti-Angiogenic Effect of Sorafenib in Mice Bearing Ehrlich's Ascites Carcinoma: Role of Angiotensin (1-7). PLoS One 9(1): e85891. DOI: 10.1371/journal.pone.0085891.
Go to original source...
Go to PubMed...
- Al-Harras MF, Houssen ME, Shaker ME, Farag K, Farouk O, Monir R, et al. (2016). Polymorphisms of glutathione S-transferase π 1 and toll-like receptors 2 and 9: Association with breast cancer susceptibility. Oncol Lett 11(3): 2182-2188. DOI: 10.3892/ol.2016.4159.
Go to original source...
Go to PubMed...
- Anjum S, Anuradha A, Krishna A (2018). A possible direct action of oxytocin on spermatogenesis and steroidogenesis in pre-pubertal mouse. Andrologia 50(4): e12958. DOI: 10.1111/and.12958.
Go to original source...
Go to PubMed...
- Anwar S, Shamsi A, Shahbaaz M, Queen A, Khan P, Hasan GM, et al. (2020). Rosmarinic Acid Exhibits Anticancer Effects via MARK4 Inhibition. Sci Rep 10(1): 1-13. DOI: 10.1038/s41598-020-65648-z.
Go to original source...
Go to PubMed...
- Bocci G, Di Paolo A, Danesi R (2013). The pharmacological bases of the antiangiogenic activity of paclitaxel. Angiogenesis 16(3): 481-492. DOI: 10.1007/s10456-013-9334-0.
Go to original source...
Go to PubMed...
- Clark AS, McAndrew NP, Troxel A, Feldman M, Lal P, Rosen M, et al. (2019). Combination Paclitaxel and Palbociclib: Results of a Phase I Trial in Advanced Breast Cancer. Clin Cancer Res 25(7): 2072-2079. DOI: 10.1158/1078-0432.ccr-18-0790.
Go to original source...
Go to PubMed...
- Day CM, Hickey SM, Song Y, Plush SE, Garg S (2020). Novel Tamoxifen Nanoformulations for Improving Breast Cancer Treatment: Old Wine in New Bottles. Molecules 25(5): 1182. DOI: 10.3390/molecules25051182.
Go to original source...
Go to PubMed...
- Değer U, Çavuş Y (2020). Investigation of the role of rosmarinic acid treatment in regulating inflammation, cell damage, and angiogenesis in rat ovarian torsion and detorsion models. Acta Cir Bras 35(3): e202000304. DOI: 10.1590/s0102-865020200030000004.
Go to original source...
Go to PubMed...
- Elufioye TO, Habtemariam S (2019). Hepatoprotective effects of rosmarinic acid: Insight into its mechanisms of action. Biomed Pharmacother 112: 108600. DOI: 10.1016/j.biopha.2019.108600.
Go to original source...
Go to PubMed...
- Fan Y-T, Yin G-J, Xiao W-Q, Qiu L, Yu G, Hu Y-L, et al. (2015). Rosmarinic Acid Attenuates Sodium Taurocholate-Induced Acute Pancreatitis in Rats by Inhibiting Nuclear Factor-κB Activation. Am J Chin Med 43(6): 1117-1135. DOI: 10.1142/s0192415x15500640.
Go to original source...
Go to PubMed...
- Feitosa IB, Mori B, Garcia Teles CB, da Costa AG (2020). What are the immune responses during the growth of Ehrlich's tumor in ascitic and solid form? Life Sci 264: 118578. DOI: 10.1016/j.lfs.2020.118578.
Go to original source...
Go to PubMed...
- Ghoneum M, Badr El-Din NK, Mahmoud AZ, Tolentino L, Pan D, Hassan TA (2019). Dietary baker's yeast sensitizes Ehrlichmammary adenocarcinoma to paclitaxel in mice bearing tumor. Oncol Rep 41(6): 3155-3166. DOI: 10.3892/or.2019.7107.
Go to original source...
Go to PubMed...
- Han Y-H, Kee J-Y, Hong S-H (2018). Rosmarinic acid activates AMPK to inhibit metastasis of colorectal cancer. Front Pharmacol 9: 68. DOI: 10.3389/fphar.2018.00068.
Go to original source...
Go to PubMed...
- Kang HJ, Lee SH, Price JE, Kim LS (2009). Curcumin Suppresses the Paclitaxel-Induced Nuclear Factor-κB in Breast Cancer Cells and Potentiates the Growth Inhibitory Effect of Paclitaxel in a Breast Cancer Nude Mice Model. Breast J 15(3): 223-229. DOI: 10.1111/j.1524-4741.2009.00709.x.
Go to original source...
Go to PubMed...
- Katary MA, Abdelsayed R, Alhashim A (2019). Salvianolic Acid B Slows the Progression of Breast Cancer Cell Growth via Enhancement of Apoptosis and Reduction of Oxidative Stress, Inflammation, and Angiogenesis. Int J Mol Sci 20(22): 5653. DOI: 10.3390/ijms20225653.
Go to original source...
Go to PubMed...
- Kirchler CG, Pezzei CK, Beć KB, Henn R, Ishigaki M, Ozaki Y, Huck CW (2017). Critical evaluation of NIR and ATR-IR spectroscopic quantifications of rosmarinic acid in rosmarini folium supported by quantum chemical calculations. Planta Med 83(12-13): 1076-1084. DOI: 10.1055/s-0043-107032.
Go to original source...
Go to PubMed...
- Li H, Zhang Y, Chen H-H, Huang E, Zhuang H, Li D, Ni F (2019a). Rosmarinic acid inhibits stem-like breast cancer through hedgehog and Bcl-2/Bax signaling pathways. Pharmacogn Mag 15(65): 600-606. DOI: 10.4103/pm.pm_22_19.
Go to original source...
- Li W, Li Q, Wei L, Pan X, Huang D, Gan J, Tang S (2019b). Rosmarinic Acid Analogue-11 Induces Apoptosis of Human Gastric Cancer SGC-7901 Cells via the Epidermal Growth Factor Receptor (EGFR)/Akt/Nuclear Factor kappa B (NF-κB) Pathway. Med Sci Monit Basic Res 25: 63-75. DOI: 10.12659/MSMBR.913331.
Go to original source...
Go to PubMed...
- Livak KJ, Schmittgen TD (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25(4): 402-408. DOI: 10.1006/meth.2001.1262.
Go to original source...
Go to PubMed...
- Ma Z, Yang J, Yang Y, Wang X, Chen G, Shi A, et al. (2020). Rosmarinic acid exerts an anticancer effect on osteosarcoma cells by inhibiting DJ-1 via regulation of the PTEN-PI3K-Akt signaling pathway. Phytomedicine 68: 153186. DOI: 10.1016/j.phymed.2020.153186.
Go to original source...
Go to PubMed...
- Moore J, Yousef M, Tsiani E (2016). Anticancer effects of rosemary (Rosmarinus officinalis L.) extract and rosemary extract polyphenols. Nutrients 8(11): 731. DOI: 10.3390/nu8110731.
Go to original source...
Go to PubMed...
- Nadeem M, Imran M, Aslam Gondal T, Imran A, Shahbaz M, Muhammad Amir R, et al. (2019). Therapeutic Potential of Rosmarinic Acid: A Comprehensive Review. Appl Sci 9(15): 3139. DOI: 10.3390/app9153139.
Go to original source...
- Parveen A, Subedi L, Kim HW, Khan Z, Zahra Z, Farooqi MQ, Kim SJ (2019). Phytochemicals Targeting VEGF and VEGF-Related Multifactors as Anticancer Therapy. J Clin Med 8(3): 350. DOI: 10.3390/jcm8030350.
Go to original source...
Go to PubMed...
- Ren X, Zhao B, Chang H, Xiao M, Wu Y, Liu Y (2018). Paclitaxel suppresses proliferation and induces apoptosis through regulation of ROS and the AKT/MAPK signaling pathway in canine mammary gland tumor cells. Mol Med Rep 17(6): 8289-8299. DOI: 10.3892/mmr.2018.8868.
Go to original source...
Go to PubMed...
- Rocha J, Eduardo-Figueira M, Barateiro A, Fernandes A, Brites D, Bronze R, et al. (2015). Anti-inflammatory Effect of Rosmarinic Acid and an Extract of Rosmarinus officinalis in Rat Models of Local and Systemic Inflammation. Basic Clin Pharmacol Toxicol 116(5): 398-413. DOI: 10.1111/bcpt.12335.
Go to original source...
Go to PubMed...
- Shibata A, Nagaya T, Imai T, Funahashi H, Nakao A, Seo H (2002). Inhibition of NF-κB Activity Decreases the VEGF mRNA Expression in MDA-MB-231 Breast Cancer Cells. Breast Cancer Res Treat 73(3): 237-243. DOI: 10.1023/A:1015872531675.
Go to original source...
Go to PubMed...
- Trócsányi E, György Z, Zámboriné-Németh É (2020). New insights into rosmarinic acid biosynthesis based on molecular studies. Curr Plant Biol 23: 100162. DOI: 10.1016/j.cpb.2020.100162.
Go to original source...
- Wang Y-M, Ji R, Chen W-W, Huang S-W, Zheng Y-J, Yang Z-T, et al. (2019). Paclitaxel alleviated sepsis-induced acute lung injury by activating MUC1 and suppressing TLR-4/NF-κB pathway. Drug Des Devel Ther 13: 3391. DOI: 10.2147/2FDDDT.S222296.
Go to original source...
Go to PubMed...
- Xu H, Wang L, Shi B, Hu L, Gan C, Wang Y, et al. (2020). Caffeine inhibits the anticancer activity of paclitaxel via down-regulation of α-tubulin acetylation. Biomed Pharmacother 129: 110441. DOI: 10.1016/j.biopha.2020.110441.
Go to original source...
Go to PubMed...
This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.