J Appl Biomed 20:1-6, 2022 | DOI: 10.32725/jab.2022.004

Overexpression of the miR-143/145 and reduced expression of the let-7 and miR-126 for early lung cancer diagnosis

Lubomír Tulinský1, *, Anton Dzian2, Tatiana Mataková3, Peter Ihnát1
1 University Hospital Ostrava, Department of Surgery, Ostrava, Czech Republic
2 Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Department of Thoracic Surgery, Martin, Slovak Republic
3 Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Biomedical Center Martin, Martin, Slovak Republic

Introduction: Lung cancer is the leading cause of cancer-related deaths worldwide. For this reason, huge efforts are being invested in discovering suitable blood biomarkers that would allow early diagnosis and treatment. One of the possible promising candidates for this role are microRNA molecules (miRNAs). The aim of the study was to identify individual blood miRNAs that could be used as potential biomarkers for early diagnosis of lung cancer.

Methods: This prospective study analyzed blood samples of 60 patients with early-stage lung cancer, and blood samples of 60 healthy individuals. All study patients with lung cancer had undergone radical pulmonary resection at the University Hospital Ostrava within the study period (2015-2017). Definitive diagnosis of lung cancer was confirmed by histopathology examination of the resected pulmonary specimen. We investigated relative expressions in selected 13 blood miRNAs; the examined miRNAs were miR-126, miR-155, miR-221, miR-21, miR-143, miR-145, miR-133a, let-7a, miR-146a, miR-31, miR-182, let-7g and miR-19b.

Results: The outcome of this study showed that the levels of the majority of the tested circulating miRNA in lung cancer patients are significantly altered. The most significant serum miRNA biomarkers for the early detection of lung cancer are as follows: miR-143, let-7g, miR-126, let-7a, and miR-145 (miR-143 and miR-145 have oncogene functions, while miR-126, let-7g and let-7a have suppressor functions).

Conclusions: We have demonstrated the excellent diagnostic value of several miRNAs (miR-126, miR-143, miR-145, let-7a and let7g). These have an estimated sensitivity and specificity of 75-85% and 0.90-0.93 AUC. However, these individual miRNA biomarkers require further validation in larger prospective cohorts.

Keywords: Blood marker; Screening; Lung cancer; miRNA; miR-143, 145
Grants and funding:

This project was supported by Ministry of Health, Czech Republic – conceptual development of research organization (FNOs/2019). We would like to thank Marian Grendar, ass. prof. (Biomedical Center Martin, Jessenius Faculty of Medicine in Martin Comenius University in Bratislava) for the help with our manuscript.

Conflicts of interest:

The authors have no conflict of interests to declare.

Received: October 20, 2021; Revised: February 17, 2022; Accepted: February 21, 2022; Prepublished online: March 16, 2022; Published: March 17, 2022  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Tulinský L, Dzian A, Mataková T, Ihnát P. Overexpression of the miR-143/145 and reduced expression of the let-7 and miR-126 for early lung cancer diagnosis. J Appl Biomed. 2022;20(1):1-6. doi: 10.32725/jab.2022.004. PubMed PMID: 35302725.
Download citation

References

  1. Bartel DP (2004). MicroRNAs. Cell 116(2): 281-297. DOI: 10.1016/s0092-8674(04)00045-5. Go to original source... Go to PubMed...
  2. Bianchi F, Nicassio F, Marzi M, Belloni E, Dall'olio V, Bernard L, et al. (2011). A serum circulating miRNA diagnostic test to identify asymptomatic high-risk individuals with early stage lung cancer. EMBO Mol Med 3(8): 495-503. DOI: 10.1002/emmm.201100154. Go to original source... Go to PubMed...
  3. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68(6): 394-424. DOI: 10.3322/caac.21492. Go to original source... Go to PubMed...
  4. Chen X, Guo X, Zhang H, Xiang Y, Chen J, Yin Y, et al. (2009). Role of miR-143 targeting KRAS in colorectal tumorigenesis. Oncogene 28(10): 1385-1392. DOI: 10.1038/onc.2008.474. Go to original source... Go to PubMed...
  5. Cho WC, Chow AS, Au JS (2009). Restoration of tumour suppressor hsa-miR-145 inhibits cancer cell growth in lung adenocarcinoma patients with epidermal growth factor receptor mutation. Eur J Cancer 45(12): 2197-2206. DOI: 10.1016/j.ejca.2009.04.039. Go to original source... Go to PubMed...
  6. Dejima H, Iinuma H, Kanaoka R, Matsutani N, Kawamura M (2017). Exosomal microRNA in plasma as a non invasive biomarker for the recurrence of non small cell lung cancer. Oncol Lett 13(3): 1256-1263. DOI: 10.3892/ol.2017.5569. Go to original source... Go to PubMed...
  7. Dimitrova N, Gocheva V, Bhutkar A, Resnick R, Jong RM, Miller KM, et al. (2016). Stromal Expression of miR-143/145 Promotes Neoangiogenesis in Lung Cancer Development. Cancer Discov 6(2): 188-201. DOI: 10.1158/2159-8290.CD-15-0854. Go to original source... Go to PubMed...
  8. Eberhardt WEE, De Ruysscher D, Weder W, Le Péchoux C, De Leyn P, Hoffmann H (2015). ESMO Consensus Guidelines: Locally-advanced stage III non-small-cell lung cancer (NSCLC). Ann Oncol 26(8): 1573-1588. DOI: 10.1093/annonc/mdv187. Go to original source... Go to PubMed...
  9. Eklund A (2016). Package 'beeswarm': The Bee Swarm Plot, an Alternative to Stripchart. R-Packages. License Artistic-2.0. [online] [cit. 2021-01-22]. Available at: https://CRAN.R-project.org/package=beeswarm
  10. Garofalo M, Di Leva G, Romano G, Nuovo G, Suh S-S, Ngankeu A, et al. (2009). miR-221&222 regulate TRAIL resistance and enhance tumorigenicity through PTEN and TIMP3 downregulation. Cancer Cell 16(6): 498-509. DOI: 10.1016/j.ccr.2009.10.014. Go to original source... Go to PubMed...
  11. Gilad S, Meiri E, Yogev Y, Benjamin S, Lebanony D, Yerushalmi N, et al. (2008). Serum MicroRNAs Are Promising Novel Biomarkers. PLoS One 3(9): e3148. DOI: 10.1371/journal.pone.0003148. Go to original source... Go to PubMed...
  12. Gorges TM, Penkalla N, Schalk T, Joosse SA, Riethdorf S, Tucholski J, et al. (2016). Enumeration and Molecular Characterization of Tumor Cells in Lung Cancer Patients Using a Novel In Vivo Device for Capturing Circulating Tumor Cells. Clin Cancer Res 22(9): 2197-2206. DOI: 10.1158/1078-0432.CCR-15-1416. Go to original source... Go to PubMed...
  13. Haber DA, Velculescu VE (2014). Blood-Based Analyses of Cancer: Circulating Tumor Cells and Circulating Tumor DNA. Cancer Discov 4(6): 650-661. DOI: 10.1158/2159-8290.CD-13-1014. Go to original source... Go to PubMed...
  14. Harris RP (2015). Starting a New Discussion About Screening for Lung Cancer. JAMA 313(7): 717. DOI: 10.1001/jama.2014.14769. Go to original source... Go to PubMed...
  15. Harris TA, Yamakuchi M, Ferlito M, Mendell JT, Lowenstein CJ (2008). MicroRNA-126 regulates endothelial expression of vascular cell adhesion molecule 1. Proc Nat Acad Sci U S A 105(5): 1516-1521. DOI: 10.1073/pnas.0707493105. Go to original source... Go to PubMed...
  16. Heegaard NH, Schetter AJ, Welsh JA, Yoneda M, Bowman ED, Harris CC (2012). Circulating micro-RNA expression profilesin early stage nonsmall cell lung cancer. Int J Cancer 130(6): 1378-1386. DOI: 10.1002/ijc.26153. Go to original source... Go to PubMed...
  17. Ishwaran H, Kogalur UB (2016). randomForestSRC: Random Forests for Survival, Regression and Classification (RF-SRC), R package version 2.4.2.
  18. Lawson J, Dickman C, MacLellan S, Towle R, Jabalee J, Lam S, Garnis C (2017). Selective secretion of microRNAs from lung cancer cells via extracellular vesicles promotes CAMK1D-mediated tube formation in endothelial cells. Oncotarget 8(48): 83913-83924. DOI: 10.18632/oncotarget.19996. Go to original source... Go to PubMed...
  19. Leidinger P, Brefort T, Backes C, Krapp M, Galata V, Beier M, et al. (2016). High-throughput qRT-PCR validation of blood microRNAs in non-small cell lung cancer. Oncotarget 7(4): 4611-4623. DOI: 10.18632/oncotarget.6566. Go to original source... Go to PubMed...
  20. Lin S, Gregory RI (2015). MicroRNA biogenesis pathways in cancer. Nat Rev Cancer 15(6): 321-333. DOI: 10.1038/nrc3932. Go to original source... Go to PubMed...
  21. Liu Q, Yu Z, Yuan S, Xie W, Li C, Hu Z, et al. (2017). Circulating exosomal microRNAs as prognostic biomarkers for non-small-cell lung cancer. Oncotarget 8(8): 13048-13058. DOI: 10.18632/oncotarget.14369. Go to original source... Go to PubMed...
  22. Oudkerk M, Devaraj A, Vliegenthart R, Henzler T, Prosch H, Heussel CP, et al. (2017). European position statement on lung cancer screening. Lancet Oncol 18(12): e754-e766. DOI: 10.1016/S1470-2045(17)30861-6. Go to original source... Go to PubMed...
  23. Qiu M, Wang J, Xu Y, Ding X, Li M, Jiang F, et al. (2015). Circulating Tumor DNA Is Effective for the Detection of EGFR Mutation in Non-Small Cell Lung Cancer: A Meta-analysis. Cancer Epidemiol Biomarkers Prev 24(1): 206-212. DOI: 10.1158/1055-9965.EPI-14-0895. Go to original source... Go to PubMed...
  24. R-project.org (2019). R: The R Project for Statistical Computing. [online] [cit. 2021-05-16]. Available at: https://www.R-project.org/
  25. Reduced Lung-Cancer Mortality with Low-Dose Computed Tomographic Screening (2011). N Engl J Med 365(5): 395-409. DOI: 10.1056/NEJMoa1102873. Go to original source... Go to PubMed...
  26. Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez J-C, Müller M (2011). pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinform 12(1). DOI: 10.1186/1471-2105-12-77. Go to original source... Go to PubMed...
  27. Ruano-Ravina A, Pérez-Ríos M, Casàn-Clará P, Provencio-Pulla M (2018). Low-dose CT for lung cancer screening. Lancet Oncol 19(3): e131-e132. DOI: 10.1016/S1470-2045(18)30121-9. Go to original source... Go to PubMed...
  28. Rupaimoole R, Slack FJ (2017). MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov 16(3): 203-222. DOI: 10.1038/nrd.2016.246. Go to original source... Go to PubMed...
  29. Seike M, Goto A, Okano T, Bowman ED, Schetter AJ, Horikawa I, Harris CC (2009). MiR-21 is an EGFR-regulated anti-apoptotic factor in lung cancer in never-smokers. Proc Natl Acad Sci U S A 106(29): 12085-12090. DOI: 10.1073/pnas.0905234106. Go to original source... Go to PubMed...
  30. Shen J, Todd NW, Zhang H, Yu L, Lingxiao X, Mei Y, et al. (2011). Plasma microRNAs as potential biomarkers for non-small-cell lung cancer. Lab Invest 91(4): 579-587. DOI: 10.1038/labinvest.2010.194. Go to original source... Go to PubMed...
  31. Sozzi G, Boeri M, Rossi M, Verri C, Suatoni P, Bravi F, et al. (2014). Clinical Utility of a Plasma-Based miRNA Signature Classifier Within Computed Tomography Lung Cancer Screening: A Correlative MILD Trial Study. J Clin Oncol 32(8): 768-773. DOI: 10.1200/JCO.2013.50.4357. Go to original source... Go to PubMed...
  32. Venables WN, Ripley BD (2002). Modern Applied Statistics with S-Plus. New York: Springer. Go to original source...
  33. Xu M, Wang Y-Z (2013). miR-133a suppresses cell proliferation, migration and invasion in human lung cancer by targeting MMP 14. Oncol Rep 30(3): 1398-1404. DOI: 10.3892/or.2013.2548. Go to original source... Go to PubMed...
  34. Yang M, Shen H, Qiu C, Ni Y, Wang L, Dong W, et al. (2013). High expression of miR-21 and miR-155 predicts recurrence and unfavourable survival in non-small cell lung cancer. Eur J Cancer 49(3): 604-615. DOI: 10.1016/j.ejca.2012.09.031. Go to original source... Go to PubMed...
  35. Yu H, Guan Z, Cuk K, Brenner H, Zhang Y (2018). Circulating microRNA biomarkers for lung cancer detection in Western populations. Cancer Med 7(10): 4849-4862. DOI: 10.1002/cam4.1782. Go to original source... Go to PubMed...
  36. Yu M, Liang H, Fu Z, Wang X, Liao Z, Zhou Y, et al. (2016). BAP1 suppresses lung cancer progression and is inhibited by miR-31. Oncotarget 7(12): 13742-13753. DOI: 10.18632/oncotarget.7328. Go to original source... Go to PubMed...
  37. Zhang J-G, Wang J-J, Zhao F, Liu Q, Jiang K, Yang G-H (2010). MicroRNA-21 (miR-21) represses tumor suppressor PTEN and promotes growth and invasion in non-small cell lung cancer (NSCLC). Clin Chim Acta 411(11-12): 846-852. DOI: 10.1016/j.cca.2010.02.074. Go to original source... Go to PubMed...
  38. Zhu S, Wu H, Wu F, Nie D, Sheng S, Mo Y-Y (2008). MicroRNA-21 targets tumor suppressor genes in invasion and metastasis. Cell Res 18(3): 350-359. DOI: 10.1038/cr.2008.24. Go to original source... Go to PubMed...
  39. Zhu W, Zhou K, Zha Y, Chen D, He J, Ma H, et al. (2016). Diagnostic Value of Serum miR-182, miR-183, miR-210, and miR-126 Levels in Patients with Early-Stage Non-Small Cell Lung Cancer. PLoS One 11(4): e0153046. DOI: 10.1371/journal.pone.0153046. Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.