J Appl Biomed 20:56-69, 2022 | DOI: 10.32725/jab.2022.009

Kilohertz alternating current neuromodulation of the pudendal nerves: effects on the anal canal and anal sphincter in rats

Rosa L. Coolen1, *, Koen M. Emmer2, Panagiota I. Spantidea1, Els van Asselt1, Jeroen R. Scheepe1, Wouter A. Serdijn2, Bertil F. M. Blok1
1 Erasmus Medical Center, Department of Urology, Rotterdam, Zuid-Holland, Netherlands
2 Delft University of Technology, Section Bioelectronics, Delft, Zuid-Holland, Netherlands

The first two objectives were to establish which stimulation parameters of kilohertz frequency alternating current (KHFAC) neuromodulation influence the effectiveness of pudendal nerve block and its safety. The third aim was to determine whether KHFAC neuromodulation of the pudendal nerve can relax the pelvic musculature, including the anal sphincter. Simulation experiments were conducted to establish which parameters can be adjusted to improve the effectiveness and safety of the nerve block. The outcome measures were block threshold (measure of effectiveness) and block threshold charge per phase (measure of safety). In vivo, the pudendal nerves in 11 male and 2 female anesthetized Sprague Dawley rats were stimulated in the range of 10 Hz to 40 kHz, and the effect on anal pressure was measured. The simulations showed that block threshold and block threshold charge per phase depend on waveform, interphase delay, electrode-to-axon distance, interpolar distance, and electrode array orientation. In vivo, the average anal pressure during unilateral KHFAC stimulation was significantly lower than the average peak anal pressure during low-frequency stimulation (p < 0.001). Stimulation with 20 kHz and 40 kHz (square wave, 10 V amplitude, 50% duty cycle, no interphase delay) induced the largest anal pressure decrease during both unilateral and bilateral stimulation. However, no statistically significant differences were detected between the different frequencies. This study showed that waveform, interphase delay and the alignment of the electrode along the nerve affect the effectiveness and safety of KHFAC stimulation. Additionally, we showed that KHFAC neuromodulation of the pudendal nerves with an electrode array effectively reduces anal pressure in rats.

Keywords: Anal sphincter; Electrical stimulation; High-frequency neuromodulation; Neurostimulation; Pelvic floor; Pudendal nerves
Grants and funding:

This study is supported by Stichting Urologisch Wetenschappelijk Onderzoek (SUWO). The funding source had no involvement in study design, data collection, analysis, interpretation of the data, writing of the report, and submission of the article for publication.

Conflicts of interest:

The authors have no conflict of interests to declare.

Received: November 16, 2021; Revised: May 6, 2022; Accepted: June 21, 2022; Published: June 21, 2022  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Coolen RL, Emmer KM, Spantidea PI, van Asselt E, Scheepe JR, Serdijn WA, Blok BFM. Kilohertz alternating current neuromodulation of the pudendal nerves: effects on the anal canal and anal sphincter in rats. J Appl Biomed. 2022;20(2):56-69. doi: 10.32725/jab.2022.009. PubMed PMID: 35727123.
Download citation

Attachments

Download fileSuppl._A_Table_1-3_JAB_Coolen_1759.pdf

File size: 51.12 kB

Download fileSuppl._D_JAB_Coolen_1759.pdf

File size: 271.46 kB

Download fileSuppl._C_JAB_Coolen_1759.pdf

File size: 110.91 kB

Download fileSuppl._B_JAB_Coolen_1759.pdf

File size: 680.73 kB

References

  1. Ackermann D, Foldes EL, Bhadra N, Kilgore KL (2009a). Electrode design for high frequency block: effect of bipolar separation on block thresholds and the onset response. Annu Int Conf IEEE Eng Med Biol Soc 2009: 654-657. DOI: 10.1109/IEMBS.2009.5332738. Go to original source... Go to PubMed...
  2. Ackermann DM, Jr., Bhadra N, Foldes EL, Wang X-F, Kilgore KL (2010). Effect of nerve cuff electrode geometry on onset response firing in high-frequency nerve conduction block. IEEE Trans Neural Syst Rehabil Eng 18(6): 658-665. DOI: 10.1109/TNSRE.2010.2071882. Go to original source... Go to PubMed...
  3. Ackermann DM, Jr., Foldes EL, Bhadra N, Kilgore KL (2009b). Effect of bipolar cuff electrode design on block thresholds in high-frequency electrical neural conduction block. IEEE Trans Neural Syst Rehabil Eng 17(5): 469-477. DOI: 10.1109/TNSRE.2009.2034069. Go to original source... Go to PubMed...
  4. Bhadra N, Kilgore KL (2004). Direct current electrical conduction block of peripheral nerve. IEEE Trans Neural Syst Rehabil Eng 12(3): 313-324. DOI: 10.1109/TNSRE.2004.834205. Go to original source... Go to PubMed...
  5. Bhadra N, Kilgore KL (2005). High-frequency electrical conduction block of mammalian peripheral motor nerve. Muscle Nerve 32(6): 782-790. DOI: 10.1002/mus.20428. Go to original source... Go to PubMed...
  6. Bhadra N, Bhadra N, Kilgore K, Gustafson KJ (2006). High frequency electrical conduction block of the pudendal nerve. J Neural Eng 3(2): 180-187. DOI: 10.1088/1741-2560/3/2/012. Go to original source... Go to PubMed...
  7. Bhadra N, Foldes EL, Ackermann D, Kilgore KL (2009). Reduction of the onset response in high frequency nerve block with amplitude ramps from non-zero amplitudes. Annu Int Conf IEEE Eng Med Biol Soc 2009: 650-653. DOI: 10.1109/IEMBS.2009.5332735. Go to original source... Go to PubMed...
  8. Bhadra N, Lahowetz EA, Foldes ST, Kilgore KL (2007). Simulation of high-frequency sinusoidal electrical block of mammalian myelinated axons. J Comp Neurosci 22(3): 313-326. DOI: 10.1007/s10827-006-0015-5. Go to original source... Go to PubMed...
  9. Bharucha AE, Wald A, Enck P, Rao S (2006). Functional anorectal disorders. Gastroenterology 130(5): 1510-1518. DOI: 10.1053/j.gastro.2005.11.064. Go to original source... Go to PubMed...
  10. Cai H, Morgan T, Pace N, Shen B, Wang J, Roppolo JR, et al. (2019). Low pressure voiding induced by a novel implantable pudendal nerve stimulator. Neurourol Urodyn 38(5): 1241-1249. DOI: 10.1002/nau.23994. Go to original source... Go to PubMed...
  11. Coolen RL, Groen J, Scheepe JR, Blok BFM (2020). Transcutaneous Electrical Nerve Stimulation and Percutaneous Tibial Nerve Stimulation to Treat Idiopathic Nonobstructive Urinary Retention: A Systematic Review. Eur Urol Focus 7(5): 1184-1194. DOI: 10.1016/j.euf.2020.09.019. Go to original source... Go to PubMed...
  12. Gaunt RA, Prochazka A (2009). Transcutaneously coupled, high-frequency electrical stimulation of the pudendal nerve blocks external urethral sphincter contractions. Neurorehabil Neural Repair 23(6): 615-626. DOI: 10.1177/1545968308328723. Go to original source... Go to PubMed...
  13. Hines ML, Carnevale NT (1997). The NEURON simulation environment. Neural Comput 9(6): 1179-1209. DOI: 10.1162/neco.1997.9.6.1179. Go to original source... Go to PubMed...
  14. Kilgore KL, Bhadra N (2004). Nerve conduction block utilising high-frequency alternating current. Med Biol Eng Comput 42(3): 394-406. DOI: 10.1007/BF02344716. Go to original source... Go to PubMed...
  15. Kilgore KL, Bhadra N (2014). Reversible nerve conduction block using kilohertz frequency alternating current. Neuromodulation 17(3): 242-255. DOI: 10.1111/ner.12100. Go to original source... Go to PubMed...
  16. Lembo A, Camilleri M (2003). Chronic constipation. N Engl J Med 349(14): 1360-1368. DOI: 10.1056/NEJMra020995. Go to original source... Go to PubMed...
  17. Li JS, Hassouna M, Sawan M, Duval F, Elhilali MM (1995). Long-term effect of sphincteric fatigue during bladder neurostimulation. J Urol 153(1): 238-242. DOI: 10.1097/00005392-199501000-00084. Go to original source... Go to PubMed...
  18. McIntyre CC, Richardson AG, Grill WM (2002). Modeling the excitability of mammalian nerve fibers: influence of afterpotentials on the recovery cycle. J Neurophysiol 87(2): 995-1006. DOI: 10.1152/jn.00353.2001. Go to original source... Go to PubMed...
  19. Merrill DR, Bikson M, Jefferys JGR (2005). Electrical stimulation of excitable tissue: design of efficacious and safe protocols. J Neurosci Methods 141(2): 171-198. DOI: 10.1016/j.jneumeth.2004.10.020. Go to original source... Go to PubMed...
  20. Miles JD, Kilgore KL, Bhadra N, Lahowetz EA (2007). Effects of ramped amplitude waveforms on the onset response of high-frequency mammalian nerve block. J Neural Eng 4(4): 390-398. DOI: 10.1088/1741-2560/4/4/005. Go to original source... Go to PubMed...
  21. Nyam DC, Pemberton JH, Ilstrup DM, Rath DM (1997). Long-term results of surgery for chronic constipation. Dis Colon Rectum 40(3): 273-279. DOI: 10.1007/BF02050415. Go to original source... Go to PubMed...
  22. Patel YA, Kim BS, Rountree WS, Butera RJ (2017). Kilohertz electrical stimulation nerve conduction block: Effects of electrode surface area. IEEE Trans Neural Syst Rehabil Eng 25(10): 1906-1916. DOI: 10.1109/TNSRE.2017.2684161. Go to original source... Go to PubMed...
  23. Peh WYX, Mogan R, Thow XY, Chua SM, Rusly A, Thakor NV, Yen SC (2018). Novel Neurostimulation of Autonomic Pelvic Nerves Overcomes Bladder-Sphincter Dyssynergia. Front Neurosci 12: 186. DOI: 10.3389/fnins.2018.00186. Go to original source... Go to PubMed...
  24. Peña E, Pelot NA, Grill WM (2020). Quantitative comparisons of block thresholds and onset responses for charge-balanced kilohertz frequency waveforms. J Neural Eng 17(4): 046048. DOI: 10.1088/1741-2552/abadb5. Go to original source... Go to PubMed...
  25. Rao SS, Patcharatrakul T (2016). Diagnosis and Treatment of Dyssynergic Defecation. J Neurogastroenterol Motil 22(3): 423-435. DOI: 10.5056/jnm16060 Go to original source... Go to PubMed...
  26. Rao SS, Bharucha AE, Chiarioni G, Felt-Bersma R, Knowles C, Malcolm A, Wald A (2016). Functional Anorectal Disorders. Gastroenterology 130(5): 1510-1518. DOI: 10.1053/j.gastro.2005.11.064. Go to original source... Go to PubMed...
  27. Rao SS, Welcher KD, Leistikow JS (1998). Obstructive defecation: a failure of rectoanal coordination. Am J Gastroenterol 93(7): 1042-1050. DOI: 10.1111/j.1572-0241.1998.00326.x. Go to original source... Go to PubMed...
  28. Smaragdos G, Chatzikonstantis G, Kukreja R, Sidiropoulos H, Rodopoulos D, Sourdis I, et al. (2017). BrainFrame: a node-level heterogeneous accelerator platform for neuron simulations. J Neural Eng 14: 066008. DOI: 10.1088/1741-2552/aa7fc5. Go to original source... Go to PubMed...
  29. Tai C, Wang J, Wang X, Roppolo JR, de Groat WC (2007). Voiding reflex in chronic spinal cord injured cats induced by stimulating and blocking pudendal nerves. Neurourol Urodyn 26(6): 879-886. DOI: 10.1002/nau.20430. Go to original source... Go to PubMed...
  30. van Asselt E, Choudhary M, Clavica F, van Mastrigt R (2017). Urethane anesthesia in acute lower urinary tract studies in the male rat. Lab Anim 51(3): 256-263. DOI: 10.1177/0023677216657850. Go to original source... Go to PubMed...
  31. Wang J, Shen B, Roppolo JR, de Groat WC, Tai C (2008). Influence of frequency and temperature on the mechanisms of nerve conduction block induced by high-frequency biphasic electrical current. J Comput Neurosci 24(2): 195-206. DOI: 10.1007/s10827-007-0050-x. Go to original source... Go to PubMed...
  32. Williamson RP, Andrews BJ (2005). Localized electrical nerve blocking. IEEE Trans Biomed Eng 52(3): 362-370. DOI: 10.1109/TBME.2004.842790. Go to original source... Go to PubMed...
  33. Yang G, Wang J, Shen B, Roppolo JR, de Groat WC, Tai C (2014). Pudendal nerve stimulation and block by a wireless-controlled implantable stimulator in cats. Neuromodulation 17(5): 490-496. DOI: 10.1111/ner.12136. Go to original source... Go to PubMed...
  34. Yi G, Grill WM (2020). Kilohertz waveforms optimized to produce closed-state Na+ channel inactivation eliminate onset response in nerve conduction block. PLoS Comput Biol 16(6): e1007766. DOI: 10.1371/journal.pcbi.1007766. Go to original source... Go to PubMed...
  35. Zhang X, Roppolo JR, de Groat WC, Tai C (2006). Simulation analysis of conduction block in myelinated axons induced by high-frequency biphasic rectangular pulses. IEEE Trans Biomed Eng 53(7): 1433-1436. DOI: 10.1109/tbme.2006.873689. Go to original source... Go to PubMed...
  36. Zhao S, Yang G, Wang J, Roppolo JR, de Groat WC, Tai C (2015). Conduction block in myelinated axons induced by high-frequency (kHz) non-symmetric biphasic stimulation. Front Comput Neurosci 9: 86. DOI: 10.3389/fncom.2015.00086. Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.