J Appl Biomed 21:180-192, 2023 | DOI: 10.32725/jab.2023.024

Ginsenoside Rb2 improves heart failure by down-regulating miR-216a-5p to promote autophagy and inhibit apoptosis and oxidative stress

You Peng1, 2, 3, *, Bin Liao1, Yan Zhou1, Wei Zeng1
1 The First Affiliated Hospital of Hunan Normal University, Hunan Provincial People's Hospital, Center of Geriatric, Changsha, Hunan, China
2 Hunan Research Institute of Geriatrics, Changsha, Hunan, China
3 Major Chronic Disease Research Center of Hunan Provincial Geriatric Institute, Changsha, Hunan, China

Background: Ginsenoside Rb2 is beneficial in cardiovascular disease treatment, yet its role in heart failure (HF) is obscure. This study aimed to investigate the effect and mechanism of ginsenoside Rb2 on HF.

Methods: The left anterior descending branch-ligated HF rat model and oxygen-glucose deprivation/reoxygenation (OGD/R) H9c2 cell model were constructed. Ginsenoside Rb2 were applied for intervention. Heart function indexes, miR-216a-5p expression, autophagy, oxidative stress, apoptosis, cell morphology, and proliferation were detected to explore the effect of ginsenoside Rb2 on HF. Overexpression of miR-216a-5p was employed to explore the specific mechanism of ginsenoside Rb2 on HF.

Results: Ginsenoside Rb2 improved the heart function of HF rats, including the reduction of heart rate, LVEDP, and heart weight/body weight ratio, and the increase of LVSP, +dP/dtmax, -dP/dtmax, LVEF, and LVFS. It also down-regulated miR-216a-5p expression and enhanced OGD/R-induced cardiomyocyte viability. Ginsenoside Rb2 up-regulated Bcl2, LC3B II/I, and Beclin1, and down-regulated Bax, Caspase-3, and p62 in the myocardium of HF rats and OGD/R-induced H9c2 cells. Moreover, ginsenoside Rb2 increased the levels of SOD and CAT, but decreased the levels of MDA and ROS in the myocardium of HF rats and OGD/R-induced H9c2 cells. However, overexpression of miR-216a-5p promoted the apoptosis and oxidative stress of cardiomyocytes and inhibited autophagy, thus reversing the therapeutic effect of ginsenoside Rb2 on HF in vivo and in vitro.

Conclusion: Ginsenoside Rb2 demonstrated potential as a therapeutic intervention for HF by enhancing autophagy and reducing apoptosis and oxidative stress through miR-216a-5p downregulation. Further research could explore its application in clinical trials and investigate the complex mechanism networks underlying its effects.

Keywords: Apoptosis; Autophagy; Ginsenoside Rb2; Heart failure; miR-216a-5p; Oxidative stress
Grants and funding:

This study was supported by Hunan Traditional Chinese Medicine Research Program (No. E2022025) and Key Scientific Research Project of Hunan Provincial Department of Education (No. 21A0044).

Conflicts of interest:

The authors have no conflict of interest to declare regarding the present study.

Received: March 2, 2023; Revised: November 21, 2023; Accepted: December 5, 2023; Prepublished online: December 14, 2023; Published: December 18, 2023  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Peng Y, Liao B, Zhou Y, Zeng W. Ginsenoside Rb2 improves heart failure by down-regulating miR-216a-5p to promote autophagy and inhibit apoptosis and oxidative stress. J Appl Biomed. 2023;21(4):180-192. doi: 10.32725/jab.2023.024. PubMed PMID: 38112457.
Download citation

References

  1. Bauersachs J, Thum T (2007). MicroRNAs in the broken heart. Eur J Clin Invest 37(11): 829-833. DOI: 10.1111/j.1365-2362.2007.01878.x. Go to original source... Go to PubMed...
  2. Chang H, Li C, Wang Q, Lu L, Zhang Q, Zhang Y, et al. (2017). QSKL protects against myocardial apoptosis on heart failure via PI3K/Akt-p53 signaling pathway. Sci Rep 7(1): 16986. DOI: 10.1038/s41598-017-17163-x. Go to original source... Go to PubMed...
  3. Chen X, Wang Q, Shao M, Ma L, Guo D, Wu Y, et al. (2019). Ginsenoside Rb3 regulates energy metabolism and apoptosis in cardiomyocytes via activating PPARα pathway. Biomed Pharmacother 120: 109487. DOI: 10.1016/j.biopha.2019.109487. Go to original source... Go to PubMed...
  4. Chen Y, Wang S, Yang S, Li R, Yang Y, Chen Y, Zhang W (2021). Inhibitory role of ginsenoside Rb2 in endothelial senescence and inflammation mediated by microRNA‑216a. Mol Med Rep 23(6): 415. DOI: 10.3892/mmr.2021.12054. Go to original source... Go to PubMed...
  5. Corsetti G, Chen-Scarabelli C, Romano C, Pasini E, Dioguardi FS, Onorati F, et al. (2019). Autophagy and Oncosis/Necroptosis AreEnhanced in Cardiomyocytes from Heart Failure Patients. Med Sci Monit Basic Res 25: 33-44. DOI: 10.12659/MSMBR.913436. Go to original source... Go to PubMed...
  6. Deng Z, Yao J, Xiao N, Han Y, Wu X, Ci C, et al. (2022). DNA methyltransferase 1 (DNMT1) suppresses mitophagy and aggravates heart failure via the microRNA-152-3p/ETS1/RhoH axis. Lab Invest 102(8): 782-793. DOI: 10.1038/s41374-022-00740-8. Go to original source... Go to PubMed...
  7. Ding H, Wang Y, Hu L, Xue S, Wang Y, Zhang L, et al. (2020). Combined detection of miR-21-5p, miR-30a-3p, miR-30a-5p, miR-155-5p, miR-216a and miR-217 for screening of early heart failure diseases. Biosci Rep 40(3): BSR20191653. DOI: 10.1042/BSR20191653. Go to original source... Go to PubMed...
  8. Divakaran V, Mann DL (2008). The Emerging Role of MicroRNAs in Cardiac Remodeling and Heart Failure. Circ Res 103(10): 1072-1083. DOI: 10.1161/CIRCRESAHA.108.183087. Go to original source... Go to PubMed...
  9. Foinquinos A, Batkai S, Genschel C, Viereck J, Rump S, Gyöngyösi M, et al. (2020). Preclinical development of a miR-132 inhibitor for heart failure treatment. Nat Commun 11(1): 633. DOI: 10.1038/s41467-020-14349-2. Go to original source... Go to PubMed...
  10. Fu W, Yu X, Lu Z, Sun F, Wang Y, Zhang Y, et al. (2016). Protective effects of ginsenoside Rb2 on myocardial ischemia in vivo and in vitro. Int J Clin Exp Med 9(6): 9843-9855.
  11. Gao G, Chen W, Yan M, Liu J, Luo H, Wang C, Yang P (2020). Rapamycin regulates the balance between cardiomyocyte apoptosis and autophagy in chronic heart failure by inhibiting mTOR signaling. Int J Mol Med 45(1): 195-209. DOI: 10.3892/ijmm.2019.4407. Go to original source... Go to PubMed...
  12. Gurusamy N, Lekli I, Gorbunov NV, Gherghiceanu M, Popescu LM, Das DK (2009). Cardioprotection by adaptation to ischaemia augments autophagy in association with BAG-1 protein. J Cell Mol Med 13(2): 373-387. DOI: 10.1111/j.1582-4934.2008.00495.x. Go to original source... Go to PubMed...
  13. Gurusamy N, Lekli I, Mukherjee S, Ray D, Ahsan MK, Gherghiceanu M, et al. (2010). Cardioprotection by resveratrol: a novel mechanism via autophagy involving the mTORC2 pathway. Cardiovasc Res 86(1): 103-112. DOI: 10.1093/cvr/cvp384. Go to original source... Go to PubMed...
  14. Hill MF, Singal PK (1996). Antioxidant and oxidative stress changes during heart failure subsequent to myocardial infarction in rats. Am J Pathol 148(1): 291-300.
  15. Huang C, Yitzhaki S, Perry CN, Liu W, Giricz Z, Mentzer RM, Jr., Gottlieb RA (2010). Autophagy induced by ischemic preconditioning is essential for cardioprotection. J Cardiovasc Transl Res 3(4): 365-373. DOI: 10.1007/s12265-010-9189-3. Go to original source... Go to PubMed...
  16. Jeong SJ, Zhang X, Rodriguez-Velez A, Evans TD, Razani B (2019). p62/SQSTM1 and Selective Autophagy in Cardiometabolic Diseases. Antioxid Redox Signal 31(6): 458-471. DOI: 10.1089/ars.2018.7649. Go to original source... Go to PubMed...
  17. Jia Z, Liu Y|, Su H, Li M, Zhang M, Zhu Y, et al. (2015). Safflower extract inhibiting apoptosis by inducing autophagy in myocardium derived H9C2 cell. Int J Clin Exp Med 8(11): 20254-20262.
  18. Khaper N, Kaur K, Li T, Farahmand F, Singal PK (2003). Antioxidant enzyme gene expression in congestive heart failure following myocardial infarction. Mol Cell Biochem 251(1-2): 9-15. Go to original source...
  19. Kilbride SM, Prehn JHM (2013). Central roles of apoptotic proteins in mitochondrial function. Oncogene 32: 2703-2711. DOI: 10.1038/onc.2012.348. Go to original source... Go to PubMed...
  20. Klimczak-Tomaniak D, Haponiuk-Skwarliñska J, Kuch M, P±czek L (2022). Crosstalk between microRNA and Oxidative Stress in Heart Failure: A Systematic Review. Int J Mol Sci 23(23): 15013. DOI: 10.3390/ijms232315013. Go to original source... Go to PubMed...
  21. Lavandero S, Chiong M, Rothermel BA, Hill JA (2015). Autophagy in cardiovascular biology. J Clin Invest 125(1): 55-64. DOI: 10.1172/JCI73943. Go to original source... Go to PubMed...
  22. Li Y, Zhang W (2022). Effect of Ginsenoside Rb2 on a Myocardial Cell Model of Coronary Heart Disease through Nrf2/HO-1 Signaling Pathway. Biol Pharm Bull 45(1): 71-76. DOI: 10.1248/bpb.b21-00525. Go to original source... Go to PubMed...
  23. Lim KH, Lim DJ, Kim JH (2013). Ginsenoside-Re ameliorates ischemia and reperfusion injury in the heart: a hemodynamics approach. J Ginseng Res 37(3): 283-292. DOI: 10.5142/jgr.2013.37.283. Go to original source... Go to PubMed...
  24. Liu L, Eisen HJ (2014). Epidemiology of heart failure and scope of the problem. Cardiol Clin 32(1): 1-8, vii. DOI: 10.1016/j.ccl.2013.09.009. Go to original source... Go to PubMed...
  25. Liu M, Mao C, Li J, Han F, Yang P (2017). Effects of the Activin A-Follistatin System on Myocardial Cell Apoptosis through the Endoplasmic Reticulum Stress Pathway in Heart Failure. Int J Mol Sci 18(2): 374. DOI: 10.3390/ijms18020374. Go to original source... Go to PubMed...
  26. Liu X, Jiang Y, Fu W, Yu X, Sui D (2020). Combination of the ginsenosides Rb3 and Rb2 exerts protective effects against myocardial ischemia reperfusion injury in rats. Int J Mol Med 45(2): 519-531. DOI: 10.3892/ijmm.2019.4414. Go to original source... Go to PubMed...
  27. Louch WE, Sheehan KA, Wolska BM (2011). Methods in cardiomyocyte isolation, culture, and gene transfer. J Mol Cell Cardiol 51(3): 288-298. DOI: 10.1016/j.yjmcc.2011.06.012. Go to original source... Go to PubMed...
  28. Maejima Y, Isobe M, Sadoshima J (2016). Regulation of autophagy by Beclin 1 in the heart. J Mol Cell Cardiol 95: 19-25. DOI: 10.1016/j.yjmcc.2015.10.032. Go to original source... Go to PubMed...
  29. Matsumoto S, Sakata Y, Suna S, Nakatani D, Usami M, Hara M, et al. (2013). Circulating p53-Responsive MicroRNAs Are Predictive Indicators of Heart Failure After Acute Myocardial Infarction. Circ Res 113(3): 322-326. DOI: 10.1161/CIRCRESAHA.113.301209. Go to original source... Go to PubMed...
  30. Melman YF, Shah R, Das S (2014). MicroRNAs in heart failure: is the picture becoming less miRky? Circ Heart Fail 7(1): 203-214. DOI: 10.1161/CIRCHEARTFAILURE.113.000266. Go to original source... Go to PubMed...
  31. Menghini R, Casagrande V, Marino A, Marchetti V, Cardellini M, Stoehr R, et al. (2014). MiR-216a: a link between endothelial dysfunction and autophagy. Cell Death Dis 5(1): e1029. DOI: 10.1038/cddis.2013.556. Go to original source... Go to PubMed...
  32. Miao L, Yang Y, Li Z, Fang Z, Zhang Y, Han CC (2022). Ginsenoside Rb2: A review of pharmacokinetics and pharmacological effects. J Ginseng Res 46(2): 206-213. DOI: 10.1016/j.jgr.2021.11.007. Go to original source... Go to PubMed...
  33. Muiesan ML, Paini A, Agabiti Rosei C, Bertacchini F, Stassaldi D, Salvetti M (2017). Current Pharmacological Therapies in Heart Failure Patients. High Blood Press Cardiovasc Prev 24(2): 107-114. DOI: 10.1007/s40292-017-0194-3. Go to original source... Go to PubMed...
  34. Nabeebaccus A, Zheng S, Shah AM (2016). Heart failure-potential new targets for therapy. Br Med Bull 119(1): 99-110. DOI: 10.1093/bmb/ldw025. Go to original source... Go to PubMed...
  35. Orso F, Fabbri G, Maggioni AP (2017). Epidemiology of Heart Failure. Handb Exp Pharmacol 243: 15-33. DOI: 10.1007/164_2016_74. Go to original source... Go to PubMed...
  36. Roger VL, Go AS, Lloyd-Jones DM, Benjamin EJ, Berry JD, Borden WB, et al. (2012). Executive summary: heart disease and stroke statistics - 2012 update: a report from the American Heart Association. Circulation 125(1): e2-e220. DOI: 10.1161/CIR.0b013e31823ac046. Go to original source... Go to PubMed...
  37. Su M, Wang J, Wang C, Wang X, Dong W, Qiu W, et al. (2015). MicroRNA-221 inhibits autophagy and promotes heart failure by modulating the p27/CDK2/mTOR axis. Cell Death Differ 22: 986-999. DOI: 10.1038/cdd.2014.187. Go to original source... Go to PubMed...
  38. Tao J, Wang J, Li C, Wang W, Yu H, Liu J, et al. (2019). MiR-216a accelerates proliferation and fibrogenesis via targeting PTEN and SMAD7 in human cardiac fibroblasts. Cardiovasc Diagn Ther 9(6): 535-544. DOI: 10.21037/cdt.2019.11.06. Go to original source... Go to PubMed...
  39. Thum T, Galuppo P, Wolf C, Fiedler J, Kneitz S, van Laake LW, et al. (2007). MicroRNAs in the Human Heart A Clue to Fetal Gene Reprogramming in Heart Failure. Circulation 116(3): 258-267. DOI: 10.1161/CIRCULATIONAHA.107.687947. Go to original source... Go to PubMed...
  40. Tijsen AJ, Creemers EE, Moerland PD, de Windt LJ, van der Wal AC, Kok WE, Pinto YM (2010). MiR423-5p as a circulating biomarker for heart failure. Circ Res 106(6): 1035-1039. DOI: 10.1161/CIRCRESAHA.110.218297. Go to original source... Go to PubMed...
  41. Tsutsui H, Kinugawa S, Matsushima S (2011). Oxidative stress and heart failure. Am J Physiol Heart Circ Physiol 301(6): H2181-2190. DOI: 10.1152/ajpheart.00554.2011. Go to original source... Go to PubMed...
  42. van der Pol A, van Gilst WH, Voors AA, van der Meer P (2019). Treating oxidative stress in heart failure: past, present and future. Eur J Heart Fail 21(4): 425-435. DOI: 10.1002/ejhf.1320. Go to original source... Go to PubMed...
  43. van Rooij E, Olson EN (2007). MicroRNAs: powerful new regulators of heart disease and provacative therapeutics targets. J Clin Invest 117(9): 2369-2376. DOI: 10.1172/JCI33099. Go to original source... Go to PubMed...
  44. Vegter EL, van der Meer P, de Windt LJ, Pinto YM, Voors AA (2016). MicroRNAs in heart failure: from biomarker to target for therapy. Eur J Heart Fail 18(5): 457-468. DOI: 10.1002/ejhf.495. Go to original source... Go to PubMed...
  45. Waldman M, Cohen K, Yadin D, Nudelman V, Gorfil D, Laniado-Schwartzman M, et al. (2018). Regulation of diabeticcardiomyopathy by caloric restriction is mediated by intracellular signaling pathways involving 'SIRT1 and PGC-1α'. Cardiovasc Diabetol 17(1): 111. DOI: 10.1186/s12933-018-0754-4. Go to original source... Go to PubMed...
  46. Wang B, Hao J, Jones SC, Yee MS, Roth JC, Dixon I (2002). Decreased Smad 7 expression contributes to cardiac fibrosis in the infarcted rat heart. Am J Physiol Heart Circ Physiol 282(5): H1685-1696. DOI: 10.1152/ajpheart.00266.2001. Go to original source... Go to PubMed...
  47. Xue Y, Fu W, Liu Y, Yu P, Sun M, Li X, et al. (2020). Ginsenoside Rb2 alleviates myocardial ischemia/reperfusion injury in rats through SIRT1 activation. J Food Sci 85(11): 4039-4049. DOI: 10.1111/1750-3841.15505. Go to original source... Go to PubMed...
  48. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE, Jr., Drazner MH, et al. (2013). 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol 62(16): e147-239. DOI: 10.1016/j.jacc.2013.05.019. Go to original source... Go to PubMed...
  49. Yuan Z, Dewson G, Czabotar PE, Birkinshaw RW (2021). VDAC2 and the BCL-2 family of proteins. Biochem Soc Trans 49(6): 2787-2795. DOI: 10.1042/BST20210753. Go to original source... Go to PubMed...
  50. Zhang B, Mao S, Liu X, Li S, Zhou H, Gu Y, et al. (2021). MiR-125b inhibits cardiomyocyte apoptosis by targeting BAK1 in heart failure. Mol Med 27: 72. DOI: 10.1186/s10020-021-00328-w. Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.