J Appl Biomed 22:23-32, 2024 | DOI: 10.32725/jab.2024.005

Dictyophora indusiata polysaccharide mediates priming of the NLRP3 inflammasome activation via TLR4/ NF-κB signaling pathway to exert immunostimulatory effects

Youyi Liu1, Huanxiao Zhang1, Yuxuan Li1, Hanqian Zha1, Yujie Gao1, Hui Chen2, Yalin Wang1, Tongxin Zhou2, *, Chao Deng1, *
1 Jiangnan University, Wuxi School of Medicine, Wuxi, Jiangsu 214122, P.R. China
2 Yixing Hospital of Traditional Chinese Medicine, Wuxi, Jiangsu 214200, P.R. China

Dictyophora indusiata, commonly known as bamboo fungus, is a type of edible mushroom that is highly popular worldwide for its rich flavor and nutritional value. It is also recognized for its pharmaceutical efficacy, with medicinal benefits attributed to its consumption. One of the most important components of Dictyophora indusiata is polysaccharide, which has been acknowledged as a promising regulator of biological response due to its immunostimulatory and anti-inflammatory properties. However, the specific roles of polysaccharide in modulating the NOD-like receptor protein 3 (NLRP3) inflammasome activation within macrophages remain relatively under-researched. To investigate this further, the mechanism by which Dictyophora indusiata polysaccharide (DIP) exerts its immunostimulatory activity in RAW 264.7 macrophages was analyzed. Results indicated that DIP has the potential to facilitate the priming of NLRP3 inflammasome activation by enhancing TLR4 expression, phosphorylation of IκB-α, and nuclear translocation of NF-κB p65 subunit. It was noted that DIP was unable to mediate the second step of NLRP3 inflammasome activation. The findings of this study provide compelling evidence that DIP has immunomodulatory effects by modulating the NLRP3 inflammasome in RAW264.7 macrophages.

Keywords: Dictyophora indusiata polysaccharide; Immunostimulatory activity; Macrophage; NLRP3 inflammasome
Grants and funding:

This work was supported by grants from the Postdoctoral Science Foundation of China (2021M691278), and the Research Project Plan of the Wuxi Municipal Health Commission (Q202243). We would like to thank Prof. Minchen Wu at the Wuxi School of Medicine for the technical assistance.

Conflicts of interest:

The authors have no conflict of interest to declare.

Received: October 9, 2023; Revised: February 5, 2024; Accepted: March 13, 2024; Prepublished online: March 13, 2024; Published: March 15, 2024  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Liu Y, Zhang H, Li Y, Zha H, Gao Y, Chen H, et al.. Dictyophora indusiata polysaccharide mediates priming of the NLRP3 inflammasome activation via TLR4/ NF-κB signaling pathway to exert immunostimulatory effects. J Appl Biomed. 2024;22(1):23-32. doi: 10.32725/jab.2024.005. PubMed PMID: 38505967.
Download citation

References

  1. Chen L, Huang G (2018). The antiviral activity of polysaccharides and their derivatives. Int J Biol Macromol 115: 77-82. DOI: 10.1016/j.ijbiomac.2018.04.056. Go to original source... Go to PubMed...
  2. Deng C, Fu H, Teng L, Hu Z, Xu X, Chen J, Ren T (2013). Anti-tumor activity of the regenerated triple-helical polysaccharide from Dictyophora indusiata. Int J Biol Macromol 61: 453-458. DOI: 10.1016/j.ijbiomac.2013.08.007. Go to original source... Go to PubMed...
  3. Deng C, Hu Z, Fu H, Hu M, Xu X, Chen J (2012). Chemical analysis and antioxidant activity in vitro of a β-D-glucan isolated from Dictyophora indusiata. Int J Biol Macromol 51: 70-75. DOI: 10.1016/j.ijbiomac.2012.05.001. Go to original source... Go to PubMed...
  4. Dowling JK, O'Neill LAJ (2012). Biochemical regulation of the inflammasome. Crit Rev Biochem Mol Biol 47: 424-443. DOI: 10.3109/10409238.2012.694844. Go to original source... Go to PubMed...
  5. Du LL, Fu QY, Xiang LP, Zheng XQ, Lu JL, Ye JH, et al. (2016). Tea Polysaccharides and Their Bioactivities. Molecules 21: 1449. DOI: 10.3390/molecules21111449. Go to original source... Go to PubMed...
  6. Elliott EI, Sutterwala FS (2015). Initiation and perpetuation of NLRP3 inflammasome activation and assembly. Immunol Rev 265: 35-52. DOI: 10.1111/imr.12286. Go to original source... Go to PubMed...
  7. Freudenberg U, Zieris A, Chwalek K, Tsurkan MV, Maitz MF, Atallah P, et al. (2015). Heparin desulfation modulates VEGF release and angiogenesis in diabetic wounds. J Control Release 220: 79-88. DOI: 10.1016/j.jconrel.2015.10.028. Go to original source... Go to PubMed...
  8. Fu H, Deng C, Teng L, Yu L, Su T, Xu X, et al. (2015). Immunomodulatory Activities on RAW 264.7 Macrophages of a Polysaccharide from Veiled Lady Mushroom, Dictyophora indusiata (Higher Basidiomycetes). Int J Med Mushrooms 17: 151-160. DOI: 10.1615/intjmedmushrooms.v17.i2.60. Go to original source... Go to PubMed...
  9. Guo J, Chen J, Lu X, Guo Z, Huang Z, Zeng S, et al. (2018). Proteomic Analysis Reveals Inflammation Modulation of κ/τ-Carrageenan Hexaoses in Lipopolysaccharide-Induced RAW264.7 Macrophages. J Agric Food Chem 66: 4758-4767. DOI: 10.1021/acs.jafc.8b01144. Go to original source... Go to PubMed...
  10. Han S, Ma C, Hu M, Wang Y, Ma F, Tao N, Qin Z (2017). A polysaccharide from Dictyophora indusiata inhibits the immunosuppressive function of cancer-associated fibroblasts. Cell Biochem Funct 35: 414-419. DOI: 10.1002/cbf.3290. Go to original source... Go to PubMed...
  11. Janeway CA, Medzhitov R (2002). Innate immune recognition. Annu Rev Immunol 20: 197-216. DOI: 10.1146/annurev.immunol.20.083001.084359. Go to original source... Go to PubMed...
  12. Jin C, Flavell RA (2010). Molecular mechanism of NLRP3 inflammasome activation. J Clin Immunol 30: 628-631. DOI: 10.1007/s10875-010-9440-3. Go to original source... Go to PubMed...
  13. Kanneganti TD, Lamkanfi M, Núñez G (2007). Intracellular NOD-like receptors in host defense and disease. Immunity 27: 549-559. DOI: 10.1016/j.immuni.2007.10.002. Go to original source... Go to PubMed...
  14. Lamkanfi M, Dixit VM (2014). Mechanisms and functions of inflammasomes. Cell 157: 1013-1022. DOI: 10.1016/j.cell.2014.04.007. Go to original source... Go to PubMed...
  15. Liu J, Wang Y, Ouyang X (2014). Beyond toll-like receptors: Porphyromonas gingivalis induces IL-6, IL-8, and VCAM-1 expression through NOD-mediated NF-κB and ERK signaling pathways in periodontal fibroblasts. Inflammation 37: 522-533. DOI: 10.1007/s10753-013-9766-0. Go to original source... Go to PubMed...
  16. Liu Q, Zhang D, Hu D, Zhou X, Zhou Y (2018). The role of mitochondria in NLRP3 inflammasome activation. Mol Immunol 103: 115-124. DOI: 10.1016/j.molimm.2018.09.010. Go to original source... Go to PubMed...
  17. Livak KJ, Schmittgen TD (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25: 402-408. DOI: 10.1006/meth.2001.1262. Go to original source... Go to PubMed...
  18. Mangan MSJ, Olhava EJ, Roush WR, Seidel HM, Glick GD, Latz E (2018). Targeting the NLRP3 inflammasome in inflammatory diseases. Nat Rev Drug Discov 17: 688. DOI: 10.1038/nrd.2018.149. Go to original source... Go to PubMed...
  19. Martinez-Micaelo N, González-Abuín N, Pinent M, Ardévol A, Blay M (2015). Procyanidin B2 inhibits inflammasome-mediated IL-1β production in lipopolysaccharide-stimulated macrophages. Mol Nutr Food Res 59: 262-269. DOI: 10.1002/mnfr.201400370. Go to original source... Go to PubMed...
  20. Pelegrin P, Surprenant A (2006). Pannexin-1 mediates large pore formation and interleukin-1beta release by the ATP-gated P2X7 receptor. EMBO J 25: 5071-5082. DOI: 10.1038/sj.emboj.7601378. Go to original source... Go to PubMed...
  21. Pizzuto M, Lonez C, Baroja-Mazo A, Martínez-Banaclocha H, Tourlomousis P, Gangloff M, et al. (2019). Saturation of acyl chains converts cardiolipin from an antagonist to an activator of Toll-like receptor-4. Cell Mol Life Sci 76: 3667-3678. DOI: 10.1007/s00018-019-03113-5. Go to original source... Go to PubMed...
  22. Ruan S, Yang Y, Li W (2022). Antrodia camphorata Polysaccharide activates autophagy and regulates NLRP3 degradation to improve liver injury-related inflammatory response. Aging (Albany NY) 14: 8970-8981. DOI: 10.18632/aging.204330. Go to original source... Go to PubMed...
  23. Schroder K, Tschopp J (2010). The inflammasomes. Cell 140: 821-832. DOI: 10.1016/j.cell.2010.01.040. Go to original source... Go to PubMed...
  24. Sharma D, Kanneganti TD (2016). The cell biology of inflammasomes: Mechanisms of inflammasome activation and regulation. J Cell Biol 213: 617-629. DOI: 10.1083/jcb.201602089. Go to original source... Go to PubMed...
  25. Sutterwala FS, Haasken S, Cassel SL (2014). Mechanism of NLRP3 inflammasome activation. Ann N Y Acad Sci 1319: 82-95. DOI: 10.1111/nyas.12458. Go to original source... Go to PubMed...
  26. Tak PP, Firestein GS (2001). NF-kappaB: a key role in inflammatory diseases. J Clin Invest 107: 7-11. DOI: 10.1172/JCI11830. Go to original source... Go to PubMed...
  27. Wang Y, Lai L, Teng L, Li Y, Cheng J, Chen J, Deng C (2019). Mechanism of the anti-inflammatory activity by a polysaccharide from Dictyophora indusiata in lipopolysaccharide-stimulated macrophages. Int J Biol Macromol 126: 1158-1166. DOI: 10.1016/j.ijbiomac.2019.01.022. Go to original source... Go to PubMed...
  28. Xin W, Wang Q, Zhang D, Wang C (2017). A new mechanism of inhibition of IL-1β secretion by celastrol through the NLRP3 inflammasome pathway. Eur J Pharmacol 814: 240-247. DOI: 10.1016/j.ejphar.2017.08.036. Go to original source... Go to PubMed...
  29. Yu Q, Nie SP, Wang JQ, Yin PF, Huang DF, Li WJ, Xie MY (2014). Toll-like receptor 4-mediated ROS signaling pathway involved in Ganoderma atrum polysaccharide-induced tumor necrosis factor-α secretion during macrophage activation. Food Chem Toxicol 66: 14-22. DOI: 10.1016/j.fct.2014.01.018. Go to original source... Go to PubMed...
  30. Zanoli P, Zavatti M (2008). Pharmacognostic and pharmacological profile of Humulus lupulus L. J Ethnopharmacol 116: 383-396. DOI: 10.1016/j.jep.2008.01.011. Go to original source... Go to PubMed...
  31. Zeng J, Chen Y, Ding R, Feng L, Fu Z, Yang S, et al. (2017). Isoliquiritigenin alleviates early brain injury after experimental intracerebral hemorrhage via suppressing ROS- and/or NF-κB-mediated NLRP3 inflammasome activation by promoting Nrf2 antioxidant pathway. J Neuroinflammation 14: 119. DOI: 10.1186/s12974-017-0895-5. Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.