J Appl Biomed 22:136-140, 2024 | DOI: 10.32725/jab.2024.019

Anti-NMDAR1 antibody impairs dendritic branching in immature cultured neurons

Pascal Jorratt1, 2, *, Aneta Petrušková1, 2, 3
1 National Institute of Mental Health, Klecany, Czech Republic
2 Charles University, Third Faculty of Medicine, Prague, Czech Republic
3 Friedrich-Alexander Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Department of Psychiatry and Psychotherapy, Erlangen, Germany

Anti-N-methyl D-aspartate receptor (anti-NMDAR) encephalitis is an autoimmune disorder characterized by IgG antibodies targeting NMDAR. The prevalence is remarkably higher in women and some develop the condition during pregnancy. While immunotherapies have shown good outcomes for pregnant mothers and their infants, the impact on early neurodevelopment remains elusive. This study investigates the effects of anti-NMDAR antibody on the development of primary cortical cultures. Anti-NMDAR antibody was administered to the cultures at day in vitro 5 for the following 5 days to assess dendritic branching and arbor complexity, and at day in vitro 14 for measuring the expression of brain-derived neurotrophic factor (BDNF) and synaptic proteins. Immature cultured neurons treated with anti-NMDAR antibody exhibited impaired dendritic branching and arbor complexity. Interestingly, BDNF expression was unaffected in mature neurons. Additionally, GluN1 expression, a mandatory NMDAR subunit, was significantly reduced, while no significant alterations were observed in PSD-95, gephyrin and synaptophysin expression. These findings shed light on the structural and synaptic impacts of anti-NMDAR antibody on immature neurons, providing evidence for their consequences in early neuronal development.

Keywords: Anti-NMDAR encephalitis; BDNF; Dendritic branching; Neuronal development; Synaptic proteins
Grants and funding:

This study was supported by GAUK 365121 (Charles University Grant Agency), NIMH (National Institute of Mental Health) Internal Grant 333 and Charles University research program Cooperatio-Neurosciences.

Conflicts of interest:

The authors have no conflict of interest to declare.

Received: April 4, 2024; Revised: July 2, 2024; Accepted: August 20, 2024; Prepublished online: September 19, 2024; Published: September 26, 2024  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Jorratt P, Petrušková A. Anti-NMDAR1 antibody impairs dendritic branching in immature cultured neurons. J Appl Biomed. 2024;22(3):136-140. doi: 10.32725/jab.2024.019. PubMed PMID: 39434510.
Download citation

References

  1. Andrzejak E, Rabinovitch E, Kreye J, Prüss H, Rosenmund C, Ziv NE, et al. (2022). Patient-Derived Anti-NMDAR Antibody Disinhibits Cortical Neuronal Networks through Dysfunction of Inhibitory Neuron Output. J Neurosci 42(15): 3253-3270. DOI: 10.1523/JNEUROSCI.1689-21.2022. Go to original source... Go to PubMed...
  2. Arévalo JC, Deogracias R (2023). Mechanisms Controlling the Expression and Secretion of BDNF. Biomolecules 13(5): 789. DOI: 10.3390/biom13050789. Go to original source... Go to PubMed...
  3. Arshadi C, Günther U, Eddison M, Harrington KIS, Ferreira TA (2021). SNT: a unifying toolbox for quantification of neuronal anatomy. Nat Methods 18(4): 374-377. DOI: 10.1038/s41592-021-01105-7. Go to original source... Go to PubMed...
  4. Dalmau J, Armangué T, Planagumà J, Radosevic M, Mannara F, Leypoldt F, et al. (2019). An update on anti-NMDA receptor encephalitis for neurologists and psychiatrists: mechanisms and models. Lancet Neurol 18(11): 1045-1057. DOI: 10.1016/S1474-4422(19)30244-3. Go to original source... Go to PubMed...
  5. Dalmau J, Lancaster E, Martinez-Hernandez E, Rosenfeld MR, Balice-Gordon R (2011). Clinical experience and laboratory investigations in patients with anti-NMDAR encephalitis. Lancet Neurol 10(1): 63-74. DOI: 10.1016/S1474-4422(10)70253-2. Go to original source... Go to PubMed...
  6. Dalmau J, Tüzün E, Wu HY, Masjuan J, Rossi JE, Voloschin A, et al. (2007). Paraneoplastic anti-N-methyl-D-aspartate receptor encephalitis associated with ovarian teratoma. Ann Neurol 61(1): 25-36. DOI: 10.1002/ana.21050. Go to original source... Go to PubMed...
  7. Ding Y, Zhou Z, Chen J, Peng Y, Wang H, Qiu W, et al. (2021). Anti-NMDAR encephalitis induced in mice by active immunization with a peptide from the amino-terminal domain of the GluN1 subunit. J Neuroinflammation 18(1): 53. DOI: 10.1186/s12974-021-02107-0. Go to original source... Go to PubMed...
  8. Domise M, Sauvé F, Didier S, Caillerez R, Bégard S, Carrier S, et al. (2019). Neuronal AMP-activated protein kinase hyper-activation induces synaptic loss by an autophagy-mediated process. Cell Death Dis 10(3): 221. DOI: 10.1038/s41419-019-1464-x. Go to original source... Go to PubMed...
  9. García-Serra A, Radosevic M, Pupak A, Brito V, Ríos J, Aguilar E, et al. (2020). Placental transfer of NMDAR antibodies causes reversible alterations in mice. Neurol Neuroimmunol Neuroinflamm 8(1): e915. DOI: 10.1212/NXI.0000000000000915. Go to original source... Go to PubMed...
  10. Gleichman AJ, Spruce LA, Dalmau J, Seeholzer SH, Lynch DR (2012). Anti-NMDA Receptor Encephalitis Antibody Binding Is Dependent on Amino Acid Identity of a Small Region within the GluN1 Amino Terminal Domain. J Neurosci 32(32): 11082-11094. DOI: 10.1523/JNEUROSCI.0064-12.2012. Go to original source... Go to PubMed...
  11. Hughes EG, Peng X, Gleichman AJ, Lai M, Zhou L, Tsou R, et al. (2010). Cellular and Synaptic Mechanisms of Anti-NMDA Receptor Encephalitis. J Neurosci 30(17): 5866-5875. DOI: 10.1523/JNEUROSCI.0167-10.2010. Go to original source... Go to PubMed...
  12. Jorratt P, Ricny J, Leibold C, Ovsepian SV (2023). Endogenous Modulators of NMDA Receptor Control Dendritic Field Expansion of Cortical Neurons. Mol Neurobiol 60(3): 1440-1452. DOI: 10.1007/s12035-022-03147-0. Go to original source... Go to PubMed...
  13. Joubert B, García-Serra A, Planagumà J, Martínez-Hernandez E, Kraft A, Palm F, et al. (2020). Pregnancy outcomes in anti-NMDA receptor encephalitis: Case series. Neurol Neuroimmunol Neuroinflamm 7(3): e668. DOI: 10.1212/NXI.0000000000000668. Go to original source... Go to PubMed...
  14. Kreye J, Wenke NK, Chayka M, Leubner J, Murugan R, Maier N, et al. (2016). Human cerebrospinal fluid monoclonal N-methyl-D-aspartate receptor autoantibodies are sufficient for encephalitis pathogenesis. Brain 139(Pt 10): 2641-2652. DOI: 10.1093/brain/aww208. Go to original source... Go to PubMed...
  15. Kumar MA, Jain A, Dechant VE, Saito T, Rafael T, Aizawa H, et al. (2010). Anti-N-methyl-D-aspartate Receptor Encephalitis During Pregnancy. Arch Neurol 67(7): 884-887. DOI: 10.1001/archneurol.2010.133. Go to original source... Go to PubMed...
  16. Li Y, Tanaka K, Wang L, Ishigaki Y, Kato N (2015). Induction of Memory Deficit in Mice with Chronic Exposure to Cerebrospinal Fluid from Patients with Anti-N-Methyl-D-Aspartate Receptor Encephalitis. Tohoku J Exp Med 237(4): 329-338. DOI: 10.1620/tjem.237.329. Go to original source... Go to PubMed...
  17. Mikasova L, De Rossi P, Bouchet D, Georges F, Rogemond V, Didelot A, et al. (2012). Disrupted surface cross-talk between NMDA and Ephrin-B2 receptors in anti-NMDA encephalitis. Brain 135(Pt 5): 1606-1621. DOI: 10.1093/brain/aws092. Go to original source... Go to PubMed...
  18. Moscato EH, Peng X, Jain A, Parsons TD, Dalmau J, Balice-Gordon RJ (2014). Acute mechanisms underlying antibody effects in anti-N-methyl-D-aspartate receptor encephalitis. Ann Neurol 76(1): 108-119. DOI: 10.1002/ana.24195. Go to original source... Go to PubMed...
  19. Okamoto S, Takaki M, Hinotsu K, Kawai H, Sakamoto S, Okahisa Y, et al. (2022). Impairment of early neuronal maturation in anti-NMDA-receptor encephalitis. Psychopharmacology (Berl). 239(2): 525-531. DOI: 10.1007/s00213-021-06036-x. Go to original source... Go to PubMed...
  20. Planagumà J, Leypoldt F, Mannara F, Gutiérrez-Cuesta J, Martín-García E, Aguilar E, et al. (2015). Human N-methyl D-aspartate receptor antibodies alter memory and behaviour in mice. Brain 138(1): 94-109. DOI: 10.1093/brain/awu310. Go to original source... Go to PubMed...
  21. Taft CE, Turrigiano GG (2013). PSD-95 promotes the stabilization of young synaptic contacts. Philos Trans R Soc Lond B Biol Sci 369(1633): 20130134. DOI: 10.1098/rstb.2013.0134. Go to original source... Go to PubMed...
  22. Titulaer MJ, McCracken L, Gabilondo I, Armangué T, Glaser C, Iizuka T, et al. (2013). Treatment and prognostic factors for long-term outcome in patients with anti-NMDA receptor encephalitis: an observational cohort study. Lancet Neurol 12(2): 157-165. DOI: 10.1016/S1474-4422(12)70310-1. Go to original source... Go to PubMed...
  23. Würdemann T, Kersten M, Tokay T, Guli X, Kober M, Rohde M, et al. (2016). Stereotactic injection of cerebrospinal fluid from anti-NMDA receptor encephalitis into rat dentate gyrus impairs NMDA receptor function. Brain Res 1633: 10-18. DOI: 10.1016/j.brainres.2015.12.027. Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.