J Appl Biomed 22:185-196, 2024 | DOI: 10.32725/jab.2024.023
Linoleic acid inhibits lipopolysaccharide-induced inflammation by promoting TLR4 regulated autophagy in murine RAW264.7 macrophages
- 1 University-Town Hospital of Chongqing Medical University, Department of Emergency and Critical Care Medicine, Chongqing 401331, China
- 2 University-Town Hospital of Chongqing Medical University, Medical Sciences Research Center, Chongqing 401331, China
- 3 Chongqing Medical University, Department of Pathophysiology, Chongqing 400016, China
- 4 University-Town Hospital of Chongqing Medical University, Department of Respiratory and Critical Care Medicine, Chongqing 401331, China
Linoleic acid (LA), an essential fatty acid, has emerged as a pivotal regulator in disorders associated with inflammation in recent years; however, the underlying mechanisms are still not completely understood. We utilized network pharmacology and experimental methodologies to elucidate the mechanisms underlying the anti-inflammatory effects of LA. Our network pharmacology analysis revealed that LA shares common targets with sepsis. These targets are enriched in various pathways comprising C-type signaling pathway, PI3K-Akt signaling pathway, toll-like receptor signaling pathway, neutrophil extracellular trap formation, AMPK signaling pathway, and autophagy-animal. These findings suggest that LA may exert regulatory effects on inflammation and autophagy during sepsis. Subsequently, we established in vivo and ex vivo models of sepsis using lipopolysaccharide (LPS) in experimental study. Treatment with LA reduced lung damage in mice with LPS-induced lung injury, and reduced tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in plasma, bronchoalveolar lavage fluid (BALF), and peritoneal lavage fluid (PLF). LA also decreased the production of TNF-α and IL-6 in RAW264.7 macrophages exposed to LPS. In LPS-induced RAW264.7 macrophages, LA induced an elevation in LC3-II while causing a reduction in p62, which was associated with downregulation of toll-like receptor 4 (TLR4). We utilized 3-methyladenine (3-MA) to inhibit the autophagic activity, which reversed the modulatory effects of LA on LC3-II and p62. 3-MA also prevented the decline in TLR4 expression along with reduction in pro-inflammatory cytokines secretion. Our findings suggest that the activation of autophagy by LA may lead to the downregulation of TLR4, thereby exerting its anti-inflammatory effects.
Keywords: Autophagy; Inflammation; Linoleic acid; Network pharmacology; Toll-like receptor 4
Grants and funding:
This work was supported by the Natural Science Foundation of Chongqing (grant no. cstc2020jcyj-msxmX0254; cstc2020jcyj-msxmX0359; cstc2021jcyj-msxmX0782), the Chongqing Municipal Public Health Bureau of Chongqing People's Munic ipal Government (grant no. 2022MSXM006; 2023MSXM106), and Graduate Innovative Special Fund Projects of Chongqing (CYS22385).
Conflicts of interest:
The authors have no manuscript-related conflict of interest to declare.
Received: January 16, 2024; Revised: November 22, 2024; Accepted: November 21, 2024; Prepublished online: December 5, 2024; Published: December 18, 2024 Show citation
ACS | AIP | APA | ASA | Harvard | Chicago | Chicago Notes | IEEE | ISO690 | MLA | NLM | Turabian | Vancouver |
References
- Bersch-Ferreira AC, Sampaio GR, Gehringer MO, Ross-Fernandes MB, Kovacs C, Alves R, et al. (2017). Association between polyunsaturated fatty acids and inflammatory markers in patients in secondary prevention of cardiovascular disease. Nutrition 37: 30-36. DOI: 10.1016/j.nut.2016.12.006.
Go to original source...
Go to PubMed...
- Blasbalg TL, Hibbeln JR, Ramsden CE, Majchrzak SF, Rawlings RR (2011). Changes in consumption of omega-3 and omega-6 fatty acids in the United States during the 20th century. Am J Clin Nutr 93(5): 950-962. DOI: 10.3945/ajcn.110.006643.
Go to original source...
Go to PubMed...
- Brown GD, Willment JA, Whitehead L (2018). C-type lectins in immunity and homeostasis. Nat Rev Immunol 18(6): 374-389. DOI: 10.1038/s41577-018-0004-8.
Go to original source...
Go to PubMed...
- Burns JL, Nakamura MT, Ma DWL (2018). Differentiating the biological effects of linoleic acid from arachidonic acid in health and disease. Prostaglandins Leukot Essent Fatty Acids 135: 1-4. DOI: 10.1016/j.plefa.2018.05.004.
Go to original source...
Go to PubMed...
- Chen L, Guan WJ, Qiu ZE, Xu JB, Bai X, Hou XC, et al. (2022a). SARS-CoV-2 nucleocapsid protein triggers hyperinflammation via protein-protein interaction-mediated intracellular Cl(-) accumulation in respiratory epithelium. Signal Transduct Target Ther 7(1): 255. DOI: 10.1038/s41392-022-01048-1.
Go to original source...
Go to PubMed...
- Chen P, Guo Z, Lei J, Wang Y (2024). Pomegranate polyphenol punicalin ameliorates lipopolysaccharide-induced memory impairment, behavioral disorders, oxidative stress, and neuroinflammation via inhibition of TLR4-NF-κB pathway. Phytother Res 38(7): 3489-3508. DOI: 10.1002/ptr.8219.
Go to original source...
Go to PubMed...
- Chen Y, Luo R, Li J, Wang S, Ding J, Zhao K, et al. (2022b). Intrinsic Radical Species Scavenging Activities of Tea Polyphenols Nanoparticles Block Pyroptosis in Endotoxin-Induced Sepsis. ACS Nano 16(2): 2429-2441. DOI: 10.1021/acsnano.1c08913.
Go to original source...
Go to PubMed...
- Ciesielska A, Matyjek M, Kwiatkowska K (2021). TLR4 and CD14 trafficking and its influence on LPS-induced pro-inflammatory signaling. Cell Mol Life Sci 78(4): 1233-1261. DOI: 10.1007/s00018-020-03656-y.
Go to original source...
Go to PubMed...
- da Silva Correia J, Ulevitch RJ (2002). MD-2 and TLR4 N-linked glycosylations are important for a functional lipopolysaccharide receptor. J Biol Chem 277(3): 1845-1854. DOI: 10.1074/jbc.M109910200.
Go to original source...
Go to PubMed...
- Daina A, Michielin O, Zoete V (2019). SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res 47(W1): W357-W364. DOI: 10.1093/nar/gkz382.
Go to original source...
Go to PubMed...
- Dajon M, Iribarren K, Cremer I (2017). Toll-like receptor stimulation in cancer: A pro- and anti-tumor double-edged sword. Immunobiology 222(1): 89-100. DOI: 10.1016/j.imbio.2016.06.009.
Go to original source...
Go to PubMed...
- Delano MJ, Ward PA (2016). The immune system's role in sepsis progression, resolution, and long-term outcome. Immunol Rev 274(1): 330-353. DOI: 10.1111/imr.12499.
Go to original source...
Go to PubMed...
- Dickson K, Lehmann C (2019). Inflammatory Response to Different Toxins in Experimental Sepsis Models. Int J Mol Sci 20(18): 4341. DOI: 10.3390/ijms20184341.
Go to original source...
Go to PubMed...
- Ding Z, Liu S, Wang X, Khaidakov M, Fan Y, Deng X, et al. (2015). Lectin-like oxidized low-density lipoprotein receptor-1 regulates autophagy and Toll-like receptor 4 in the brain of hypertensive mice. J Hypertens 33(3): 525-533; discussion 533. DOI: 10.1097/hjh.0000000000000411.
Go to original source...
Go to PubMed...
- Dos Santos CC, Amatullah H, Vaswani CM, Maron-Gutierrez T, Kim M, Mei SHJ, et al. (2022). Mesenchymal stromal (stem) cell therapy modulates miR-193b-5p expression to attenuate sepsis-induced acute lung injury. Eur Respir J 59(1): 2004216. DOI: 10.1183/13993003.04216-2020.
Go to original source...
Go to PubMed...
- Eltzschig HK, Bratton DL, Colgan SP (2014). Targeting hypoxia signalling for the treatment of ischaemic and inflammatory diseases. Nat Rev Drug Discov 13(11): 852-869. DOI: 10.1038/nrd4422.
Go to original source...
Go to PubMed...
- Facchin BM, Dos Reis GO, Vieira GN, Mohr ETB, da Rosa JS, Kretzer IF, et al. (2022). Inflammatory biomarkers on an LPS-induced RAW 264.7 cell model: a systematic review and meta-analysis. Inflamm Res 71(7-8): 741-758. DOI: 10.1007/s00011-022-01584-0.
Go to original source...
Go to PubMed...
- Gong T, Liu L, Jiang W, Zhou R (2020). DAMP-sensing receptors in sterile inflammation and inflammatory diseases. Nat Rev Immunol 20(2): 95-112. DOI: 10.1038/s41577-019-0215-7.
Go to original source...
Go to PubMed...
- Hu Y, Chen H, Zhang L, Lin X, Li X, Zhuang H, et al. (2021). The AMPK-MFN2 axis regulates MAM dynamics and autophagy induced by energy stresses. Autophagy 17(5): 1142-1156. DOI: 10.1080/15548627.2020.1749490.
Go to original source...
Go to PubMed...
- Innes JK, Calder PC (2018). Omega-6 fatty acids and inflammation. Prostaglandins Leukot Essent Fatty Acids 132: 41-48. DOI: 10.1016/j.plefa.2018.03.004.
Go to original source...
Go to PubMed...
- Inoki K, Kim J, Guan KL (2012). AMPK and mTOR in cellular energy homeostasis and drug targets. Annu Rev Pharmacol Toxicol 52: 381-400. DOI: 10.1146/annurev-pharmtox-010611-134537.
Go to original source...
Go to PubMed...
- Iwasaki A, Medzhitov R (2004). Toll-like receptor control of the adaptive immune responses. Nat Immunol 5(10): 987-995. DOI: 10.1038/ni1112.
Go to original source...
Go to PubMed...
- Jager J, Corcelle V, Grémeaux T, Laurent K, Waget A, Pagès G, et al. (2011). Deficiency in the extracellular signal-regulated kinase 1 (ERK1) protects leptin-deficient mice from insulin resistance without affecting obesity. Diabetologia 54(1): 180-189. DOI: 10.1007/s00125-010-1944-0.
Go to original source...
Go to PubMed...
- Jones SA, Jenkins BJ (2018). Recent insights into targeting the IL-6 cytokine family in inflammatory diseases and cancer. Nat Rev Immunol 18(12): 773-789. DOI: 10.1038/s41577-018-0066-7.
Go to original source...
Go to PubMed...
- Keiser MJ, Roth BL, Armbruster BN, Ernsberger P, Irwin JJ, Shoichet BK (2007). Relating protein pharmacology by ligand chemistry. Nat Biotechnol 25(2): 197-206. DOI: 10.1038/nbt1284.
Go to original source...
Go to PubMed...
- Kim HY, Rho SH, Lim JH, Park HJ, Jeong HJ (2019). Protective effect of linoleic acid against inflammatory reactions by mast cell via caspase-1 cascade pathways. J Food Biochem 43(8): e12932. DOI: 10.1111/jfbc.12932.
Go to original source...
Go to PubMed...
- Kim SY, Jeong S, Jung E, Baik KH, Chang MH, Kim SA, et al. (2012). AMP-activated protein kinase-α1 as an activating kinase of TGF-β-activated kinase 1 has a key role in inflammatory signals. Cell Death Dis 3(7): e357. DOI: 10.1038/cddis.2012.95.
Go to original source...
Go to PubMed...
- Komatsu N, Takayanagi H (2022). Mechanisms of joint destruction in rheumatoid arthritis - immune cell-fibroblast-bone interactions. Nat Rev Rheumatol 18(7): 415-429. DOI: 10.1038/s41584-022-00793-5.
Go to original source...
Go to PubMed...
- Kong P, Cui ZY, Huang XF, Zhang DD, Guo RJ, Han M (2022). Inflammation and atherosclerosis: signaling pathways and therapeutic intervention. Signal Transduct Target Ther 7(1): 131. DOI: 10.1038/s41392-022-00955-7.
Go to original source...
Go to PubMed...
- Lee JW, Nam H, Kim LE, Jeon Y, Min H, Ha S, et al. (2019). TLR4 (toll-like receptor 4) activation suppresses autophagy through inhibition of FOXO3 and impairs phagocytic capacity of microglia. Autophagy 15(5): 753-770. DOI: 10.1080/15548627.2018.1556946.
Go to original source...
Go to PubMed...
- Li B, Leung JCK, Chan LYY, Yiu WH, Tang SCW (2020). A global perspective on the crosstalk between saturated fatty acids and Toll-like receptor 4 in the etiology of inflammation and insulin resistance. Prog Lipid Res 77: 101020. DOI: 10.1016/j.plipres.2019.101020.
Go to original source...
Go to PubMed...
- Li C, Liu F, Yang X, Guo B, Li G, Yin J, et al. (2022a). Targeting lectin-like oxidized low-density lipoprotein receptor-1 triggers autophagic program in esophageal cancer. Cell Death Differ 29(4): 697-708. DOI: 10.1038/s41418-021-00884-y.
Go to original source...
Go to PubMed...
- Li J, Qi X, Jiang B, Huang T, Luo L, Liu S, Yin Z (2019). Phosphorylated Heat Shock Protein 27 Inhibits Lipopolysaccharide-Induced Inflammation in Thp1 Cells by Promoting TLR4 Endocytosis, Ubiquitination, and Degradation. Inflammation 42(5): 1788-1799. DOI: 10.1007/s10753-019-01041-x.
Go to original source...
Go to PubMed...
- Li K, Lv G, Pan L (2018). Sirt1 alleviates LPS induced inflammation of periodontal ligament fibroblasts via downregulation of TLR4. Int J Biol Macromol 119: 249-254. DOI: 10.1016/j.ijbiomac.2018.07.099.
Go to original source...
Go to PubMed...
- Li R, Li X, Zhao J, Meng F, Yao C, Bao E, et al. (2022b). Mitochondrial STAT3 exacerbates LPS-induced sepsis by driving CPT1a-mediated fatty acid oxidation. Theranostics 12(2): 976-998. DOI: 10.7150/thno.63751.
Go to original source...
Go to PubMed...
- Lu YC, Yeh WC, Ohashi PS (2008). LPS/TLR4 signal transduction pathway. Cytokine 42(2): 145-151. DOI: 10.1016/j.cyto.2008.01.006.
Go to original source...
Go to PubMed...
- Luo TT, Lu Y, Yan SK, Xiao X, Rong XL, Guo J (2020). Network Pharmacology in Research of Chinese Medicine Formula: Methodology, Application and Prospective. Chin J Integr Med 26(1): 72-80. DOI: 10.1007/s11655-019-3064-0.
Go to original source...
Go to PubMed...
- Marangoni F, Agostoni C, Borghi C, Catapano AL, Cena H, Ghiselli A, et al. (2020). Dietary linoleic acid and human health: Focus on cardiovascular and cardiometabolic effects. Atherosclerosis 292: 90-98. DOI: 10.1016/j.atherosclerosis.2019.11.018.
Go to original source...
Go to PubMed...
- Matsuzawa-Ishimoto Y, Hwang S, Cadwell K (2018). Autophagy and Inflammation. Annu Rev Immunol 36: 73-101. DOI: 10.1146/annurev-immunol-042617-053253.
Go to original source...
Go to PubMed...
- Mihaylova MM, Shaw RJ (2011). The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat Cell Biol 13(9): 1016-1023. DOI: 10.1038/ncb2329.
Go to original source...
Go to PubMed...
- Miller S, Tavshanjian B, Oleksy A, Perisic O, Houseman BT, Shokat KM, Williams RL (2010). Shaping Development of Autophagy Inhibitors with the Structure of the Lipid Kinase Vps34. Science 327(5973): 1638-1642. DOI: 10.1126/science.1184429.
Go to original source...
- Mizushima N, Komatsu M (2011). Autophagy: renovation of cells and tissues. Cell 147(4): 728-741. DOI: 10.1016/j.cell.2011.10.026.
Go to original source...
Go to PubMed...
- Mizushima N, Yoshimori T (2007). How to interpret LC3 immunoblotting. Autophagy 3(6): 542-545. DOI: 10.4161/auto.4600.
Go to original source...
Go to PubMed...
- Monlish DA, Bhatt ST, Schuettpelz LG (2016). The Role of Toll-Like Receptors in Hematopoietic Malignancies. Front Immunol 7: 390. DOI: 10.3389/fimmu.2016.00390.
Go to original source...
Go to PubMed...
- Pan Y, Sun X, Jiang L, Hu L, Kong H, Han Y, et al. (2016). Metformin reduces morphine tolerance by inhibiting microglial-mediated neuroinflammation. J Neuroinflammation 13(1): 294. DOI: 10.1186/s12974-016-0754-9.
Go to original source...
Go to PubMed...
- Piñero J, Bravo À, Queralt-Rosinach N, Gutiérrez-Sacristán A, Deu-Pons J, Centeno E, et al. (2017). DisGeNET: a comprehensive platform integrating information on human disease-associated genes and variants. Nucleic Acids Res 45(D1): D833-D839. DOI: 10.1093/nar/gkw943.
Go to original source...
Go to PubMed...
- Piñero J, Ramírez-Anguita JM, Saüch-Pitarch J, Ronzano F, Centeno E, Sanz F, Furlong LI (2020). The DisGeNET knowledge platform for disease genomics: 2019 update. Nucleic Acids Res 48(D1): D845-D855. DOI: 10.1093/nar/gkz1021.
Go to original source...
Go to PubMed...
- Poltorak A, He X, Smirnova I, Liu MY, Van Huffel C, Du X, et al. (1998). Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282(5396): 2085-2088. DOI: 10.1126/science.282.5396.2085.
Go to original source...
Go to PubMed...
- Puneet P, McGrath MA, Tay HK, Al-Riyami L, Rzepecka J, Moochhala SM, et al. (2011). The helminth product ES-62 protects against septic shock via Toll-like receptor 4-dependent autophagosomal degradation of the adaptor MyD88. Nature Immunology 12(4): 344-351. DOI: 10.1038/ni.2004.
Go to original source...
Go to PubMed...
- Qian Z, Wu Z, Huang L, Qiu H, Wang L, Li L, et al. (2015). Mulberry fruit prevents LPS-induced NF-kappaB/pERK/MAPK signals in macrophages and suppresses acute colitis and colorectal tumorigenesis in mice. Sci Rep 5: 17348. DOI: 10.1038/srep17348.
Go to original source...
Go to PubMed...
- Qiu P, Liu Y, Zhang J (2019). Review: the Role and Mechanisms of Macrophage Autophagy in Sepsis. Inflammation 42(1): 6-19. DOI: 10.1007/s10753-018-0890-8.
Go to original source...
Go to PubMed...
- Raetz CR, Whitfield C (2002). Lipopolysaccharide endotoxins. Annu Rev Biochem 71: 635-700. DOI: 10.1146/annurev.biochem.71.110601.135414.
Go to original source...
Go to PubMed...
- Ren Q, Guo F, Tao S, Huang R, Ma L, Fu P (2020). Flavonoid fisetin alleviates kidney inflammation and apoptosis via inhibiting Src-mediated NF-κB p65 and MAPK signaling pathways in septic AKI mice. Biomed Pharmacother 122: 109772. DOI: 10.1016/j.biopha.2019.109772.
Go to original source...
Go to PubMed...
- Reyes AWB, Vu SH, Huy TXN, Min W, Lee HJ, Chang HH, et al. (2020). Modulatory Effect of Linoleic Acid During Brucella abortus 544 Infection in Murine Macrophage RAW264.7 Cells and Murine Model BALB/c Mice. J Microbiol Biotechnol 30(5): 642-648. DOI: 10.4014/jmb.1911.11037.
Go to original source...
Go to PubMed...
- Simopoulos AP (2016). An Increase in the Omega-6/Omega-3 Fatty Acid Ratio Increases the Risk for Obesity. Nutrients 8(3): 128. DOI: 10.3390/nu8030128.
Go to original source...
Go to PubMed...
- Stelzer G, Rosen N, Plaschkes I, Zimmerman S, Twik M, Fishilevich S, et al. (2016). The GeneCards Suite: From Gene Data Mining to Disease Genome Sequence Analyses. Curr Protoc Bioinformatics 54: 1.30.1-1.30.33. DOI: 10.1002/cpbi.5.
Go to original source...
Go to PubMed...
- Taha A, Sharifpanah F, Wartenberg M, Sauer H (2020). Omega-3 and Omega-6 polyunsaturated fatty acids stimulate vascular differentiation of mouse embryonic stem cells. J Cell Physiol 235(10): 7094-7106. DOI: 10.1002/jcp.29606.
Go to original source...
Go to PubMed...
- Velloso LA, Folli F, Saad MJ (2015). TLR4 at the Crossroads of Nutrients, Gut Microbiota, and Metabolic Inflammation. Endocr Rev 36(3): 245-271. DOI: 10.1210/er.2014-1100.
Go to original source...
Go to PubMed...
- Vilser C, Hueller H, Nowicki M, Hmeidan FA, Blumenauer V, Spanel-Borowski K (2010). The variable expression of lectin-like oxidized low-density lipoprotein receptor (LOX-1) and signs of autophagy and apoptosis in freshly harvested human granulosa cells depend on gonadotropin dose, age, and body weight. Fertil Steril 93(8): 2706-2715. DOI: 10.1016/j.fertnstert.2009.02.038.
Go to original source...
Go to PubMed...
- Wang B, Li X, Li M, Geng Y, Wang N, Jin Y, et al. (2022). Dopamine D3 receptor signaling alleviates mouse rheumatoid arthritis by promoting Toll-like receptor 4 degradation in mast cells. Cell Death Dis 13(3): 240. DOI: 10.1038/s41419-022-04695-y.
Go to original source...
Go to PubMed...
- Wang X, Wang ZY, Zheng JH, Li S (2021). TCM network pharmacology: A new trend towards combining computational, experimental and clinical approaches. Chin J Nat Med 19(1): 1-11. DOI: 10.1016/s1875-5364(21)60001-8.
Go to original source...
Go to PubMed...
- Yan Y, Jiang W, Liu L, Wang X, Ding C, Tian Z, Zhou R (2015). Dopamine controls systemic inflammation through inhibition of NLRP3 inflammasome. Cell 160(1-2): 62-73. DOI: 10.1016/j.cell.2014.11.047.
Go to original source...
Go to PubMed...
- Yang B, Zhou Y, Wu M, Li X, Mai K, Ai Q (2020). ω-6 Polyunsaturated fatty acids (linoleic acid) activate both autophagy and antioxidation in a synergistic feedback loop via TOR-dependent and TOR-independent signaling pathways. Cell Death Dis 11(7): 607. DOI: 10.1038/s41419-020-02750-0.
Go to original source...
Go to PubMed...
- Yang J, Pi C, Wang G (2018). Inhibition of PI3K/Akt/mTOR pathway by apigenin induces apoptosis and autophagy in hepatocellular carcinoma cells. Biomed Pharmacother 103: 699-707. DOI: 10.1016/j.biopha.2018.04.072.
Go to original source...
Go to PubMed...
- Yu C, Wang D, Yang Z, Wang T (2022). Pharmacological Effects of Polyphenol Phytochemicals on the Intestinal Inflammation via Targeting TLR4/NF-kappaB Signaling Pathway. Int J Mol Sci 23(13): 6939. DOI: 10.3390/ijms23136939.
Go to original source...
Go to PubMed...
- Yu W, Zhang Y, Sun L, Huang W, Li X, Xia N, et al. (2024). Myeloid Trem2 ameliorates the progression of metabolic dysfunction-associated steatotic liver disease by regulating macrophage pyroptosis and inflammation resolution. Metabolism 155: 155911. DOI: 10.1016/j.metabol.2024.155911.
Go to original source...
Go to PubMed...
- Zhang M, Liu S, Chua MS, Li H, Luo D, Wang S, et al. (2019a). SOCS5 inhibition induces autophagy to impair metastasis in hepatocellular carcinoma cells via the PI3K/Akt/mTOR pathway. Cell Death Dis 10(8): 612. DOI: 10.1038/s41419-019-1856-y.
Go to original source...
Go to PubMed...
- Zhang Q, Jiang Y, Qin Y, Liu J, Xie Y, Zhang L, et al. (2024). Linoleic Acid Alleviates Lipopolysaccharide Induced Acute Liver Injury viaActivation of Nrf2. Physiol Res 73(3): 381-391. DOI: 10.33549/physiolres.935201.
Go to original source...
Go to PubMed...
- Zhang SY, Xu QP, Shi LN, Li SW, Wang WH, Wang QQ, et al. (2023). Soluble CD4 effectively prevents excessive TLR activation of resident macrophages in the onset of sepsis. Signal Transduct Target Ther 8(1): 236. DOI: 10.1038/s41392-023-01438-z.
Go to original source...
Go to PubMed...
- Zhang W, Zhuang N, Liu X, He L, He Y, Mahinthichaichan P, et al. (2019b). The metabolic regulator Lamtor5 suppressesinflammatory signaling via regulating mTOR-mediated TLR4 degradation. Cell Mol Immunol 17(10): 1063-1076. DOI: 10.1038/s41423-019-0281-6.
Go to original source...
Go to PubMed...
- Zhao YJ, Chen YE, Zhang HJ, Gu X (2021). LncRNA UCA1 remits LPS-engendered inflammatory damage through deactivation of miR-499b-5p/TLR4 axis. IUBMB Life 73(2): 463-473. DOI: 10.1002/iub.2443.
Go to original source...
Go to PubMed...
This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.