J Appl Biomed 22:221-227, 2024 | DOI: 10.32725/jab.2024.026

Endoscopic luminal impedance planimetry of the lower oesophageal sphincter and pylorus in experimental pigs: a pilot study

Jan Bureš1, 2, 3, *, Věra Radochová4, Darina Kohoutová3, 5, Miroslav Zavoral1, 2, Kristina Hugová6, 7, Štěpán Suchánek1, 2, Ondřej Soukup3, Jan Martínek6, 8
1 Military University Hospital Prague, Institute of Gastrointestinal Oncology, Prague, Czech Republic
2 Charles University, First Faculty of Medicine and Military University Hospital Prague, Department of Medicine, Prague, Czech Republic
3 University Hospital Hradec Králové, Biomedical Research Centre, Hradec Králové, Czech Republic
4 University of Defence, Military Faculty of Medicine, Animal Laboratory, Hradec Králové, Czech Republic
5 The Royal Marsden NHS Foundation Trust, London, United Kingdom
6 Institute for Clinical and Experimental Medicine, Department of Hepatogastroenterology, Prague, Czech Republic
7 Charles University, First Faculty of Medicine, Institute of Physiology, Prague, Czech Republic
8 University of Ostrava, Faculty of Medicine, Academic Department of Internal Medicine, Ostrava, Czech Republic

Background/Aims: The functional lumen imaging probe (FLIP) relies on the principle of impedance planimetry that enables direct measurement of intraluminal pressure, cross-sectional areas, and wall biomechanical properties. The aim of our pilot project was to introduce this method to assess function of the lower oesophageal sphincter and pyloric muscle in experimental pigs.

Methods: All measurements were accomplished in one session in six adult female pigs (mean weight 34.2 ± 3.6 kg), using the EndoFLIP 1.0 System with EndoFLIP catheters. Five major parameters were evaluated: balloon pressure (mm Hg), estimated diameter (mm), cross-sectional area (mm2), distensibility (mm2/mm Hg), and zone compliance (mm3/mm Hg).

Results: In total, 180 readings were successfully accomplished. Most of the measured values were nearing lower average figures for the lower oesophageal sphincter, and upper average figures for the pylorus in healthy humans. The porcine pyloric sphincter is composed of the Torus pyloricus. It serves as a study "gatekeeper" between the stomach and D1 duodenum, thus explaining higher pyloric readings. There was a clear trend for increasing values of CSA (cross-sectional area), diameter, and balloon pressure with increased filling balloon volumes. However, the sphincter distensibility did not change with increasing filling volumes, either for the lower oesophageal sphincter or pylorus.

Conclusion: Endoscopic functional luminal planimetry in experimental pigs is feasible, both for the lower oesophageal sphincter and the pylorus. This is an important starting point for future experimental endoscopic trials and pharmacology studies.

Keywords: Endoscopic luminal impedance planimetry; Experimental pigs; Lower oesophageal sphincter; Pylorus
Grants and funding:

This work was supported by the research projects DZVRO MO1012 and MH CZ-DRO (UHHK, 00179906). The financial support was used to cover material costs (experimental animals, drugs, EndoFLIP catheters, endoscopic accessories). Neither the sponsors nor the financial support influenced the study design, collection, analysis and interpretation of data, manuscript writing, or the decision to submit the article for publication.

Conflicts of interest:

The authors have no conflict of interest to declare.

Received: June 28, 2024; Revised: September 19, 2024; Accepted: November 29, 2024; Prepublished online: December 11, 2024; Published: December 18, 2024  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Bureš J, Radochová V, Kohoutová D, Zavoral M, Hugová K, Suchánek Š, et al.. Endoscopic luminal impedance planimetry of the lower oesophageal sphincter and pylorus in experimental pigs: a pilot study. J Appl Biomed. 2024;22(4):221-227. doi: 10.32725/jab.2024.026. PubMed PMID: 40033810.
Download citation

References

  1. Arroyo Vázquez JA, Bergström M, Bligh S, McMahon BP, Park PO (2018). Exploring pyloric dynamics in stenting using a distensibility technique. Neurogastroenterol Motil 30(12): e13445. DOI: 10.1111/nmo.13445. Go to original source... Go to PubMed...
  2. Ata-Lawenko RM, Lee YY (2017). Emerging Roles of the Endolumenal Functional Lumen Imaging Probe in Gastrointestinal Motility Disorders. J Neurogastroenterol Motil 23(2): 164-170. DOI: 10.5056/jnm16171. Go to original source... Go to PubMed...
  3. Bredenoord AJ, Rancati F, Lin H, Schwartz N, Argov M (2022). Normative values for esophageal functional lumen imaging probe measurements: A meta-analysis. Neurogastroenterol Motil 34(11): e14419. DOI: 10.1111/nmo.14419. Go to original source... Go to PubMed...
  4. Bures J, Kvetina J, Radochova V, Knoblochova V, Rejchrt S, Valis M, et al. (2022). Effect of ketamine, an NMDA-receptor antagonist, on gastric myoelectric activity in experimental pigs. Mil Med Sci Lett 91(Suppl. 1): 15.
  5. Bures J, Kvetina J, Radochova V, Tacheci I, Peterova E, Herman D, et al. (2020). The pharmacokinetic parameters and the effect of a single and repeated doses of memantine on gastric myoelectric activity in experimental pigs. PLoS One 15(1): e0227781. DOI: 10.1371/journal.pone.0227781. Go to original source... Go to PubMed...
  6. Bures J, Kvetina J, Tacheci I, Pavlik M, Kunes M, Rejchrt S, et al. (2015). The effect of different doses of atropine on gastric myoelectrical activity in fasting experimental pigs. J Appl Biomed 13: 273-277. DOI: 10.1016/j.jab.2015.04.004. Go to original source...
  7. Bures J, Radochova V, Kvetina J, Kohoutova D, Valis M, Rejchrt S, et al. (2023). Wireless Monitoring of Gastrointestinal Transit Time, Intra-luminal pH, Pressure and Temperature in Experimental Pigs: A Pilot Study. Acta Medica (Hradec Kralove) 66(1): 11-18. DOI: 10.14712/18059694.2023.9. Go to original source... Go to PubMed...
  8. Bures J, Tacheci I, Kvetina J, Radochova V, Kohoutova D, Valis M, et al. (2021a). Dextran Sodium Sulphate-Induced Gastrointestinal Injury Further Aggravates the Impact of Galantamine on the Gastric Myoelectric Activity in Experimental Pigs. Pharmaceuticals (Basel) 14(6): 590. DOI: 10.3390/ph14060590. Go to original source... Go to PubMed...
  9. Bures J, Tacheci I, Kvetina J, Radochova V, Prchal L, Kohoutova D, et al. (2021b). The Impact of Dextran Sodium Sulfate-Induced Gastrointestinal Injury on the Pharmacokinetic Parameters of Donepezil and Its Active Metabolite 6-O-desmethyldonepezil, and Gastric Myoelectric Activity in Experimental Pigs. Molecules 26(8): 2160. DOI: 10.3390/molecules26082160. Go to original source... Go to PubMed...
  10. Carlson DA, Kou W, Lin Z, Hinchcliff M, Thakrar A, Falmagne S, et al. (2019). Normal Values of Esophageal Distensibility and Distension-Induced Contractility Measured by Functional Luminal Imaging Probe Panometry. Clin Gastroenterol Hepatol 17(4): 674-681.e1. DOI: 10.1016/j.cgh.2018.07.042. Go to original source... Go to PubMed...
  11. Chen HM, Li BW, Li LY, Xia L, Chen XB, Shah R, et al. (2019). Functional lumen imaging probe in gastrointestinal motility diseases. J Dig Dis 20(11): 572-577. DOI: 10.1111/1751-2980.12818. Go to original source... Go to PubMed...
  12. Clarke JO, Ahuja NK, Fernandez-Becker NQ, Gregersen H, Kamal AN, Khan A, et al. (2020). The functional lumen imaging probe in gastrointestinal disorders: the past, present, and future. Ann N Y Acad Sci 1482(1): 16-25. DOI: 10.1111/nyas.14463. Go to original source... Go to PubMed...
  13. Council of Europe (1986). Explanatory Report to the European Convention for the Protection of Vertebrate Animals Used for Experimental and Other Scientific Purposes (European Treaty Series - No. 123). Strasbourg, 12 p.
  14. Dantas RO, Alves LM, Cassiani R de A (2009). Gender differences in proximal esophageal contractions. Arq Gastroenterol 46(4): 284-287. DOI: 10.1590/s0004-28032009000400007. Go to original source... Go to PubMed...
  15. Dantas RO, Ferriolli E, Souza MA (1998). Gender effects on esophageal motility. Braz J Med Biol Res 31(4): 539-544. DOI: 10.1590/s0100-879x1998000400011. Go to original source... Go to PubMed...
  16. Desprez C, Roman S, Leroi AM, Gourcerol G (2020). The use of impedance planimetry (Endoscopic Functional Lumen Imaging Probe, EndoFLIP®) in the gastrointestinal tract: A systematic review. Neurogastroenterol Motil 32(9): e13980. DOI: 10.1111/nmo.13980. Go to original source... Go to PubMed...
  17. Dogan I, Mittal RK (2006). Esophageal motor disorders: recent advances. Curr Opin Gastroenterol 22(4): 417-422. DOI: 10.1097/01.mog.0000231818.64138.8a. Go to original source... Go to PubMed...
  18. Donnan EN, Pandolfino JE (2020). EndoFLIP in the Esophagus: Assessing Sphincter Function, Wall Stiffness, and Motility to Guide Treatment. Gastroenterol Clin North Am 49(3): 427-435. DOI: 10.1016/j.gtc.2020.04.002. Go to original source... Go to PubMed...
  19. Gonzalez C, Kwak JM, Davrieux F, Watanabe R, Marescaux J, Swanström LL (2019). Hybrid transgastric approach for the treatment of gastroesophageal junction pathologies. Dis Esophagus 32(2). DOI: 10.1093/dote/doy095. Go to original source... Go to PubMed...
  20. Gonzalez LM, Moeser AJ, Blikslager AT (2015). Porcine models of digestive disease: the future of large animal translational research. Transl Res 166(1): 12-27. DOI: 10.1016/j.trsl.2015.01.004. Go to original source... Go to PubMed...
  21. Hirano I, Pandolfino JE, Boeckxstaens GE (2017). Functional Lumen Imaging Probe for the Management of Esophageal Disorders: Expert Review from the Clinical Practice Updates Committee of the AGA Institute. Clin Gastroenterol Hepatol 15(3): 325-334. DOI: 10.1016/j.cgh.2016.10.022. Go to original source... Go to PubMed...
  22. Jagtap N, Kalapala R, Reddy DN (2020). Assessment of Pyloric Sphincter Physiology Using Functional Luminal Imaging Probe in Healthy Volunteers. J Neurogastroenterol Motil 26(3): 391-396. DOI: 10.5056/jnm19200. Go to original source... Go to PubMed...
  23. Kararli TT (1995). Comparison of the gastrointestinal anatomy, physiology, and biochemistry of humans and commonly usedlaboratory animals. Biopharm Drug Dispos 16(5): 351-380. DOI: 10.1002/bdd.2510160502. Go to original source... Go to PubMed...
  24. Lottrup C, Gregersen H, Liao D, Fynne L, Frøkjær JB, Krogh K, et al. (2015). Functional lumen imaging of the gastrointestinal tract. J Gastroenterol 50(10): 1005-1016. DOI: 10.1007/s00535-015-1087-7. Go to original source... Go to PubMed...
  25. McMahon BP, Frøkjaer JB, Drewes AM, Gregersen H (2004). A new measurement of oesophago-gastric junction competence. Neurogastroenterol Motil 16(5): 543-546. DOI: 10.1111/j.1365-2982.2004.00540.x. Go to original source... Go to PubMed...
  26. McMahon BP, Frøkjaer JB, Liao D, Kunwald P, Drewes AM, Gregersen H (2005). A new technique for evaluating sphincter function in visceral organs: application of the functional lumen imaging probe (FLIP) for the evaluation of the oesophago-gastric junction. Physiol Meas 26(5): 823-836. DOI: 10.1088/0967-3334/26/5/019. Go to original source... Go to PubMed...
  27. Mittal RK, Liu J, Puckett JL, Bhalla V, Bhargava V, Tipnis N, Kassab G (2005). Sensory and motor function of the esophagus: lessons from ultrasound imaging. Gastroenterology 128(2): 487-497. DOI: 10.1053/j.gastro.2004.08.004. Go to original source... Go to PubMed...
  28. O'Dea J, Siersema PD (2013). Esophageal dilation with integrated balloon imaging: initial evaluation in a porcine model. Therap Adv Gastroenterol 6(2): 109-114. DOI: 10.1177/1756283X12467566. Go to original source... Go to PubMed...
  29. Pandolfino JE, Shi G, Curry J, Joehl RJ, Brasseur JG, Kahrilas PJ (2002). Esophagogastric junction distensibility: a factor contributing to sphincter incompetence. Am J Physiol Gastrointest Liver Physiol 282(6): G1052-1058. DOI: 10.1152/ajpgi.00279.2001. Go to original source... Go to PubMed...
  30. Pandolfino JE, Shi G, Zhang Q, Ghosh S, Brasseur JG, Kahrilas PJ (2005). Measuring EGJ opening patterns using high resolution intraluminal impedance. Neurogastroenterol Motil 17(2): 200-206. DOI: 10.1111/j.1365-2982.2004.00589.x. Go to original source... Go to PubMed...
  31. Perretta S, Dallemagne B, Allemann P, Marescaux J (2010). Multimedia manuscript. Heller myotomy and intraluminal fundoplication: a NOTES technique. Surg Endosc 24(11): 2903. DOI: 10.1007/s00464-010-1073-3. Go to original source... Go to PubMed...
  32. Perretta S, Dallemagne B, Donatelli G, Diemunsch P, Marescaux J (2011). Transoral endoscopic esophageal myotomy based on esophageal function testing in a survival porcine model. Gastrointest Endosc 73(1): 111-116. DOI: 10.1016/j.gie.2010.09.009. Go to original source... Go to PubMed...
  33. Popescu M, White E, Mutalib M (2023). EndoFLIP assessment of pyloric sphincter in children: a single-center experience. Transl Gastroenterol Hepatol 8: 17. DOI: 10.21037/tgh-22-58. Go to original source... Go to PubMed...
  34. Regan J, Walshe M, Rommel N, Tack J, McMahon BP (2013). New measures of upper esophageal sphincter distensibility and opening patterns during swallowing in healthy subjects using EndoFLIP®. Neurogastroenterol Motil 25(1): e25-34. DOI: 10.1111/nmo.12041. Go to original source... Go to PubMed...
  35. Rivera Bermudez MA, Swanson L, Townsend A, Hunter SE, Saunders JK, Wise KB, et al. (2015). Characterization of Swine Models of Benign Esophageal Stricture for the Evaluation of Esophageal Stents. Gastrointest Endoscopy 81(Suppl. 5): AB529-AB530. DOI: 10.1016/j.gie.2015.03.1802. Go to original source...
  36. Shaker R, Bardan E, Gu C, Massey BT, Sanders T, Kern MK, et al. (2004). Effect of lower esophageal sphincter tone and crural diaphragm contraction on distensibility of the gastroesophageal junction in humans. Am J Physiol Gastrointest Liver Physiol 287(4): G815-821. DOI: 10.1152/ajpgi.00120.2004. Go to original source... Go to PubMed...
  37. Soliman H, Gourcerol G (2023). Targeting the pylorus in gastroparesis: From physiology to endoscopic pyloromyotomy. Neurogastroenterol Motil 35(2): e14529. DOI: 10.1111/nmo.14529. Go to original source... Go to PubMed...
  38. Suenderhauf C, Parrott N (2013). A physiologically based pharmacokinetic model of the minipig: data compilation and model implementation. Pharm Res 30(1): 1-15. DOI: 10.1007/s11095-012-0911-5. Go to original source... Go to PubMed...
  39. Tachecí I, Radochová V, Květina J, Rejchrt S, Kopáčová M, Bureš J (2015). Oesophageal Manometry in Experimental Pigs: Methods and Initial Experience. Acta Medica (Hradec Kralove) 58(4): 131-134. DOI: 10.14712/18059694.2016.5. Go to original source... Go to PubMed...
  40. Tsianou CC, Kvetina J, Radochova V, Kohoutova D, Rejchrt S, Valis M, et al. (2023). The effect of single and repeated doses of rivastigmine on gastric myoelectric activity in experimental pigs. PLoS One 18(6): e0286386. DOI: 10.1371/journal.pone.0286386. Go to original source... Go to PubMed...
  41. Tveden-Nyborg P, Bergmann TK, Lykkesfeldt J (2018). Basic & Clinical Pharmacology & Toxicology Policy for Experimental and Clinical studies. Basic Clin Pharmacol Toxicol 123(3): 233-235. DOI: 10.1111/bcpt.13059. Go to original source... Go to PubMed...
  42. Ullal TV, Marks SL, Belafsky PC, Conklin JL, Pandolfino JE (2022). A Comparative Assessment of the Diagnosis of Swallowing Impairment and Gastroesophageal Reflux in Canines and Humans. Front Vet Sci 9: 889331. DOI: 10.3389/fvets.2022.889331. Go to original source... Go to PubMed...
  43. Vackova Z, Levenfus I, Pohl D (2023). Interventional functional diagnostics in gastrointestinal endoscopy: Combining diagnostic and therapeutic tools in the endoscopy suite with the functional lumen imaging probe. Curr Opin Pharmacol 73: 102414. DOI: 10.1016/j.coph.2023.102414. Go to original source... Go to PubMed...
  44. van Hees H (2022). Fibre in the diet of the suckling pig: Opportunities for the maturation of the gastrointestinal tract and post-weaning resilience. Thesis, Ghent University. [online] [cit. 2024-06-24]. Available from: https://www.researchgate.net/publication/359557436
  45. Wu PI, Sloan JA, Kuribayashi S, Gregersen H (2020). Impedance in the evaluation of the esophagus. Ann N Y Acad Sci 1481(1): 139-153. DOI: 10.1111/nyas.14408. Go to original source... Go to PubMed...
  46. Yim B, Gregor L, Siwiec RM, Al-Haddad M, Nowak TV, Wo JM (2023). Pyloric Functional Lumen Imaging Probe Measurements Are Dependent on Balloon Position. J Neurogastroenterol Motil 29(2): 192-199. DOI: 10.5056/jnm22053. Go to original source... Go to PubMed...
  47. Zheng T, Vosoughi K, Busciglio I, Tebay L, Burton D, Camilleri M (2022). Fasting pyloric diameter and distensibility by functional endoluminal imaging probe in unsedated healthy volunteers. Neurogastroenterol Motil 34(10): e14386. DOI: 10.1111/nmo.14386. Go to original source... Go to PubMed...
  48. 20 ml 30 ml 40 ml20 ml 30 ml 40 ml20 ml 30 ml 40 ml20 ml 30 ml 40 ml

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.