J Appl Biomed 23:1-11, 2025 | DOI: 10.32725/jab.2025.001
Systematic review of antibacterial potential in calcium oxide and silicon oxide nanoparticles for clinical and environmental infection control
- 1 Management & Science University, Postgraduate Center, Shah Alam, Selangor, Malaysia
- 2 Management & Science University, School of Graduate Studies, Shah Alam, Selangor, Malaysia
- 3 Management & Science University, International Medical School, Shah Alam, Selangor, Malaysia
- 4 University of Baghdad, Science College, Department of Biotechnology, Baghdad, Iraq
A substantial threat to worldwide health, the proliferation of antibiotic-resistant bacteria compels researchers to seek innovative antibacterial substances. This systematic review assesses the role of nanoparticles, particularly Calcium oxide and Silicon oxide nanoparticles, in infection control. The article examines the mechanisms by which these nanoparticles act against various bacteria and evaluates their potential as novel agents in infection control strategies. A systematic literature search from 2015 to 2024 encompassing Web of Science, PubMed, Wiley, Science Direct, and Google Scholar, yielded 70 publications meeting the review criteria. This comprehensive methodology provides a thorough understanding of the capabilities and limitations of Calcium oxide and Silicon oxide nanoparticles as antibacterial agents. The review aims to build a solid foundation for the utilization of nanoparticles in addressing the obstacles presented by antibiotic resistance by combining data from various investigations. Additionally, it aims to explore the safety and environmental implications associated with their use in clinical and environmental settings, providing a comprehensive analysis that may contribute to future studies and real-world applications in the field of antimicrobial technology.
Keywords: Antibiotic resistance; Antimicrobial; Biofilm inhibition; Calcium oxide nanoparticles; Infection control; Silicon oxide nanoparticles
Grants and funding:
This review article is part of the project funded by Grant ID SG-003-012023-SGS from the Management and Science University (MSU). We acknowledge the financial support provided by MSU for the successful completion of this work. It is important to note that the funder, MSU, had no role in influencing the results or decisions made during the project.
Conflicts of interest:
The authors have no conflict of interest to declare and collectively affirm their commitment to the accuracy and reliability of the systematic review presented in this article.
Received: August 14, 2024; Revised: December 3, 2024; Accepted: January 20, 2025; Prepublished online: February 10, 2025; Published: March 27, 2025 Show citation
ACS | AIP | APA | ASA | Harvard | Chicago | Chicago Notes | IEEE | ISO690 | MLA | NLM | Turabian | Vancouver |
References
- Abbas IK, Aadim KA (2022). Synthesis and Study of Structural Properties of Calcium Oxide Nanoparticles Produced by Laser-Induced Plasma and its Effect on Antibacterial Activity. Sci Technol Indones 7: 427-434. DOI: 10.26554/sti.2022.7.4.427-434.
Go to original source...
- Akl MA, Mostafa MM, Abdel Hamid AI, Hassanin EE, Abdel-Raouf M (2020). Assessment of the antimicrobial activities of trioctylphosphine oxide modified silica nanoparticles. Egypt J Chem 63: 1325-1339. DOI: 10.21608/ejchem.2019.15032.1910.
Go to original source...
- Alavi M, Hamblin M, Mozafari M, Rose Alencar de Menezes I, Douglas Melo Coutinho H (2022). Surface modification of SiO2 nanoparticles for bacterial decontaminations of blood products. Cell Mol Biomed Reports 2: 87-97. DOI: 10.55705/cmbr.2022.338888.1039.
Go to original source...
- Algadi H, Alhoot MA, Al-Maleki AR, Purwitasari N (2024). Effects of Metal and Metal Oxide Nanoparticles against Biofilm-Forming Bacteria: A systematic Review. J Microbiol Biotechnol 34(9): 1-9. DOI: 10.4014/jmb.2403.03029.
Go to original source...
Go to PubMed...
- AlMatar M, Makky EA, Var I, Koksal F (2018). The Role of Nanoparticles in the Inhibition of Multidrug-resistant Bacteria and Biofilms. Curr Drug Deliv 15(4): 470-484. DOI: 10.2174/1567201815666171207163504.
Go to original source...
Go to PubMed...
- Amaro F, Morón Á, Díaz S, Martín-González A, Gutiérrez JC (2021). Metallic nanoparticles - friends or foes in the battle against antibiotic-resistant bacteria? Microorganisms 9(2): 364. DOI: 10.3390/microorganisms9020364.
Go to original source...
Go to PubMed...
- Anandakumar H (2023). Nano-Antibacterial Materials as an Alternative Antimicrobial Strategy. J Comput Intell Mater Sci 1: 45-55. DOI: 10.53759/832x/jcims202301005.
Go to original source...
- Barma MD, Kannan SD, Indiran MA, Rajeshkumar S, Kumar RP (2020). Antibacterial Activity of Mouthwash Incorporated with Silica Nanoparticles against S. aureus, S. mutans, E. faecalis: An in-vitro Study. J Pharm Res Int 32(16): 25-33. DOI: 10.9734/jpri/2020/v32i1630646.
Go to original source...
- Bassegoda A, Ivanova K, Ramon E, Tzanov T (2018). Strategies to prevent the occurrence of resistance against antibiotics by using advanced materials. Appl Microbiol Biotechnol 102(5): 2075-2089. DOI: 10.1007/s00253-018-8776-0.
Go to original source...
Go to PubMed...
- Bharti S (2024). Harnessing the potential of bimetallic nanoparticles: Exploring a novel approach to address antimicrobial resistance. World J Microbiol Biotechnol 40: 89. DOI: 10.1007/s11274-024-03923-1.
Go to original source...
Go to PubMed...
- Bhattacharjee R, Kumar L, Mukerjee N, Anand U, Dhasmana A, Preetam S, et al. (2022). The emergence of metal oxide nanoparticles (NPs) as a phytomedicine: A two-facet role in plant growth, nano-toxicity and anti-phyto-microbial activity. Biomed Pharmacother 155: 113658. DOI: 10.1016/j.biopha.2022.113658.
Go to original source...
Go to PubMed...
- Bhattacharjee R, Negi A, Bhattacharya B, Dey T, Mitra P, Preetam S, et al. (2023). Nanotheranostics to target antibiotic-resistant bacteria: Strategies and applications. OpenNano 11: 100138. DOI: 10.1016/j.onano.2023.100138.
Go to original source...
- Caballero Gómez N, Manetsberger J, Benomar N, Abriouel H (2023). Novel combination of nanoparticles and metallo-β-lactamase inhibitor/antimicrobial-based formulation to combat antibioticresistant Enterococcus sp. and Pseudomonas sp. strains. Int J Biol Macromol 248:125982. DOI: 10.1016/j.ijbiomac.2023.125982.
Go to original source...
Go to PubMed...
- Castillo RR, Vallet-Regí M (2021). Recent advances toward the use of mesoporous silica nanoparticles for the treatment of bacterial infections. Int J Nanomedicine 16: 4409-4430. DOI: 10.2147/IJN.S273064.
Go to original source...
Go to PubMed...
- Dos Santos Ramos MA, de Toledo LG, Spósito L, Marena GD, de Lima LC, Fortunato GC, et al. (2021). Nanotechnology-based lipid systems applied to resistant bacterial control: A review of their use in the past two decades. Int J Pharm 603: 120706. DOI: 10.1016/j.ijpharm.2021.120706.
Go to original source...
Go to PubMed...
- Fan X, Yahia L, Sacher E (2021). Antimicrobial properties of the Ag, Cu nanoparticle system. Biology 10(2): 137. DOI: 10.3390/biology10020137.
Go to original source...
Go to PubMed...
- Filipoviæ N, Tomiæ N, Kuzmanoviæ M, Stevanoviæ MM (2022). Nanoparticles. Potential for Use to Prevent Infections. In: Soria F, Rako D, de Graaf P (Eds). Urinary Stents. Springer, Cham. DOI: 10.1007/978-3-031-04484-7_26.
Go to original source...
- Fonseca S, Cayer MP, Ahmmed KMT, Khadem-Mohtaram N, Charette SJ, Brouard D (2022). Characterization of the Antibacterial Activity of an SiO2 Nanoparticular Coating to Prevent Bacterial Contamination in Blood Products. Antibiotics 11(1): 107. DOI: 10.3390/antibiotics11010107.
Go to original source...
Go to PubMed...
- Francis DV, Jayakumar MN, Ahmad H, Gokhale T (2023). Antimicrobial Activity of Biogenic Metal Oxide Nanoparticles and Their Synergistic Effect on Clinical Pathogens. Int J Mol Sci 24(12): 9998. DOI: 10.3390/ijms24129998.
Go to original source...
Go to PubMed...
- Ganesan K, Vanathi P, Sasthri G, Ganeshan A, Periakaruppan R (2023). Green synthesis and characterization of Halymenia floresia-mediated silica nanoparticles with antibacterial potential for removal of heavy metals from water. Biomass Conv Bioref. DOI: 10.1007/s13399-023-05239-w.
Go to original source...
- Gao Y, Chen Y, Cao Y, Mo A, Peng Q (2021). Potentials of nanotechnology in treatment of methicillin-resistant Staphylococcus aureus. Eur J Med Chem 213: 113056. DOI: 10.1016/j.ejmech.2020.113056.
Go to original source...
Go to PubMed...
- Gupta D, Singh A, Khan AU (2017). Nanoparticles as Efflux Pump and Biofilm Inhibitor to Rejuvenate Bactericidal Effect of Conventional Antibiotics. Nanoscale Res Lett 12(1): 454. DOI: 10.1186/s11671-017-2222-6.
Go to original source...
Go to PubMed...
- Hao Z, Wang M, Cheng L, Si M, Feng Z, Feng Z (2024). Synergistic antibacterial mechanism of silver-copper bimetallic nanoparticles. Front Bioeng Biotechnol 11: 1337543. DOI: 10.3389/fbioe.2023.1337543.
Go to original source...
Go to PubMed...
- Harish, Kumari S, Parihar J, Akash, Kumari J, Kumar L, et al. (2022). Synthesis, Characterization, and Antibacterial Activity of Calcium Hydroxide Nanoparticles Against Gram-Positive and Gram-Negative Bacteria. ChemistrySelect 7: e202203094. DOI: 10.1002/slct.202203094.
Go to original source...
- Hu C, He G, Yang Y, Wang N, Zhang Y, Su Y, et al. (2024). Nanomaterials Regulate Bacterial Quorum Sensing: Applications, Mechanisms, and Optimization Strategies. Adv Sci 11(15): e2306070. DOI: 10.1002/advs.202306070.
Go to original source...
Go to PubMed...
- Jiang L, Ding L, Liu G (2023). Nanoparticle formulations for therapeutic delivery, pathogen imaging and theranostic applications in bacterial infections. Theranostics 13(5): 1545-1570. DOI: 10.7150/thno.82790.
Go to original source...
Go to PubMed...
- Jiao Z, Teng Y, Zhan C, Qiao Y, Ma Y, Wang C, Wu H (2022). Multiclawed SiO2Nano-Antibacterial Agent Based on Charge Inversed Ce6 Ionic Liquid Polymers for Combating Oral Biofilm Infection. J Nanomater 2022: 1-10. DOI: 10.1155/2022/2468104.
Go to original source...
- Juncker RB, Lazazzera BA, Billi F (2021). The use of functionalized nanoparticles to treat Staphylococcus aureus-based surgical-site infections: a systematic review. J Appl Microbiol 131(6): 2659-2668. DOI: 10.1111/jam.15075.
Go to original source...
Go to PubMed...
- Kadiyala U, Kotov NA, VanEpps JS (2018). Antibacterial Metal Oxide Nanoparticles: Challenges in Interpreting the Literature. Curr Pharm Des 24(8): 896-903. DOI: 10.2174/1381612824666180219130659.
Go to original source...
Go to PubMed...
- Kang X, Yang X, He Y, Guo C, Li Y, Ji H, et al. (2023). Strategies and materials for the prevention and treatment of biofilms. Mater Today Bio 23: 100827. DOI: 10.1016/j.mtbio.2023.100827.
Go to original source...
Go to PubMed...
- Karaman Dª, Ercan UK, Bakay E, Topaloğlu N, Rosenholm JM (2020). Evolving Technologies and Strategies for Combating Antibacterial Resistance in the Advent of the Postantibiotic Era. Adv Funct Mater 30: 1908783. DOI: 10.1002/adfm.201908783.
Go to original source...
- Karunanayake LI, Waniganayake YC, Nirmala Gunawardena KD, Danuka Padmaraja SA, Peter D, Jayasekera R, Karunanayake P (2019). Use of silicon nanoparticle surface coating in infection control: Experience in a tropical healthcare setting. Infect Dis Heal 24(4): 201-207. DOI: 10.1016/j.idh.2019.06.006.
Go to original source...
Go to PubMed...
- Kazem HW, Abdulazeem L, Imran NK (2024). Antibacterial Potential of Bio-Synthesized Gold Nanoparticles Against MDR Bacteria. Int J Med Sci Dent Heal 10(3): 24-33. DOI: 10.55640/ijmsdh-10-03-20.
Go to original source...
- Khan AA, Manzoor KN, Sultan A, Saeed M, Rafique M, Noushad S, et al. (2021). Pulling the brakes on fast and furious multiple drug-resistant (MDR) bacteria. Int J Mol Sci 22(2): 859. DOI: 10.3390/ijms22020859.
Go to original source...
Go to PubMed...
- Khan AU, Hussain T, Abdullah, Khan MA, Almostafa MM, Younis NS, Yahya G (2023). Antibacterial and Antibiofilm Activity of Ficus carica-Mediated Calcium Oxide (CaONPs) Phyto-Nanoparticles. Molecules 28(14): 5553. DOI: 10.3390/molecules28145553.
Go to original source...
Go to PubMed...
- Khan MR, Fromm KM, Rizvi TF, Giese B, Ahamad F, Turner RJ, et al. (2020). Metal Nanoparticle-Microbe Interactions: Synthesis and Antimicrobial Effects. Part Part Syst Charact 37: 1-22. DOI: 10.1002/ppsc.201900419.
Go to original source...
- Khezerlou A, Alizadeh-Sani M, Azizi-Lalabadi M, Ehsani A (2018). Nanoparticles and their antimicrobial properties against pathogens including bacteria, fungi, parasites and viruses. Microb Pathog 123: 505-526. DOI: 10.1016/j.micpath.2018.08.008.
Go to original source...
Go to PubMed...
- Khorsandi K, Hosseinzadeh R, Sadat Esfahani H, Keyvani-Ghamsari S, Ur Rahman S (2021a). Nanomaterials as drug delivery systems with antibacterial properties: current trends and future priorities. Expert Rev Anti Infect Ther 19(10): 1299-1323. DOI: 10.1080/14787210.2021.1908125.
Go to original source...
Go to PubMed...
- Khorsandi K, Keyvani-Ghamsari S, Khatibi Shahidi F, Hosseinzadeh R, Kanwal S (2021b). A mechanistic perspective on targeting bacterial drug resistance with nanoparticles. J Drug Target 29(9): 941-959. DOI: 10.1080/1061186X.2021.1895818.
Go to original source...
Go to PubMed...
- Kokkarachedu V, Chandrasekaran K, Sisubalan N, Jayaramudu T, Vijayan A, Sadiku R (2024). SiO2-Based Nanomaterials as Antibacterial and Antiviral Agents: Potential Applications, In: Kokkarachedu V, Sadiku R (Eds). Nanoparticles in Modern Antimicrobial and Antiviral Applications. Nanotechnology in the Life Sciences. Springer, Cham. DOI: 10.1007/978-3-031-50093-0_4.
Go to original source...
- Kumar S, Sharma V, Pradhan JK, Sharma SK, Singh P, Sharma JK (2021). Structural, optical and antibacterial response of CaO nanoparticles synthesized via direct precipitation technique. Nano Biomed Eng 13: 172-178. DOI: 10.5101/NBE.V13I2.P172-178.
Go to original source...
- Kumari M, Sarkar B, Mukherjee K (2022). Nanoscale calcium oxide and its biomedical applications: A comprehensive review. Biocatal Agric Biotechnol 47: 102506. DOI: 10.1016/j.bcab.2022.102506.
Go to original source...
- Makabenta JMV, Nabawy A, Li CH, Schmidt-Malan S, Patel R, Rotello VM (2021). Nanomaterial-based therapeutics for antibiotic-resistant bacterial infections. Nat Rev Microbiol 19: 23-36. DOI: 10.1038/s41579-020-0420-1.
Go to original source...
Go to PubMed...
- Malekmohammadi S, Mohammed RUR, Samadian H, Zarebkohan A, García-Fernández A, Kokil GR, et al. (2022). Nonordered dendritic mesoporous silica nanoparticles as promising platforms for advanced methods of diagnosis and therapies. Mater Today Chem 26: 101144. DOI: 10.1016/j.mtchem.2022.101144.
Go to original source...
- Mamun MM, Sorinolu AJ, Munir M, Vejerano EP (2021). Nanoantibiotics: Functions and Properties at the Nanoscale to Combat Antibiotic Resistance. Front Chem 9: 687660. DOI: 10.3389/fchem.2021.687660.
Go to original source...
Go to PubMed...
- Matusoiu F, Negrea A, Ciopec M, Duteanu N, Negrea P, Ianasi P, Ianasi C (2022). Antimicrobial Perspectives of Active SiO2FexOy/ZnO Composites. Pharmaceutics 14(10): 2063. DOI: 10.3390/pharmaceutics14102063.
Go to original source...
Go to PubMed...
- Metryka O, Wasilkowski D, Mrozik A (2021). Insight into the antibacterial activity of selected metal nanoparticles and alterations within the antioxidant defence system in Escherichia coli, Bacillus cereus and Staphylococcus epidermidis. Int J Mol Sci 22(21): 11811. DOI: 10.3390/ijms222111811.
Go to original source...
Go to PubMed...
- Mohanaparameswari S, Balachandramohan M, Sasikumar P, Rajeevgandhi C, Vimalan M, Pugazhendhi S, et al. (2023). Investigation of structural properties and antibacterial activity of AgO nanoparticle extract from Solanum nigrum/Mentha leaf extracts by green synthesis method. Green Process Synth 12(1): 20230080. DOI: 10.1515/gps-2023-0080.
Go to original source...
- Mondal SK, Chakraborty S, Manna S, Mandal SM (2024). Antimicrobial nanoparticles: current landscape and future challenges. RSC Pharm 1: 388-402. DOI: 10.1039/d4pm00032c.
Go to original source...
- Morelli L, Polito L, Richichi B, Compostella F (2021). Glyconanoparticles as tools to prevent antimicrobial resistance. Glycoconj J 38(4): 475-490. DOI: 10.1007/s10719-021-09988-6.
Go to original source...
Go to PubMed...
- Mosselhy DA, Assad M, Sironen T, Elbahri M (2021). Nanotheranostics: A possible solution for drug-resistant Staphylococcus aureus and their biofilms? Nanomaterials 11(1): 82. DOI: 10.3390/nano11010082.
Go to original source...
Go to PubMed...
- Mubeen B, Ansar AN, Rasool R, Ullah I, Imam SS, Alshehri S, et al. (2021). Nanotechnology as a Novel Approach in Combating Microbes Providing an Alternative to Antibiotics. Antibiotics 10(12): 1473. DOI: 10.3390/antibiotics10121473.
Go to original source...
Go to PubMed...
- Nandhini J, Karthikeyan E, Rajeshkumar S (2024). Nanomaterials for wound healing: Current status and futuristic frontier. Biomed Technol 6: 26-45. DOI: 10.1016/j.bmt.2023.10.001.
Go to original source...
- Page MJ, Moher D, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. (2021). PRISMA 2020 explanation and elaboration: updated guidance and exemplars for reporting systematic reviews. BMJ 372: n160. DOI: 10.1136/bmj.n160.
Go to original source...
Go to PubMed...
- Pham TD, Truong TT, Nguyen HL, Hoang LB, Bui VP, Tran TT, et al. (2022). Synthesis and Characterization of Novel Core-Shell ZnO@SiO2Nanoparticles and Application in Antibiotic and Bacteria Removal. ACS Omega 7(46): 42073-42082. DOI: 10.1021/acsomega.2c04226.
Go to original source...
Go to PubMed...
- Pham TN, Loupias P, Dassonville-Klimpt A, Sonnet P (2019). Drug delivery systems designed to overcome antimicrobial resistance. Med Res Rev 39(6): 2343-2396. DOI: 10.1002/med.21588.
Go to original source...
Go to PubMed...
- Radulescu DM, Surdu VA, Ficai A, Ficai D, Grumezescu AM, Andronescu E (2023). Green Synthesis of Metal and Metal Oxide Nanoparticles: A Review of the Principles and Biomedical Applications. Int J Mol Sci 24(10): 15397. DOI: 10.3390/ijms242015397.
Go to original source...
Go to PubMed...
- Rashki S, Asgarpour K, Tarrahimofrad H, Hashemipour M, Ebrahimi MS, Fathizadeh H, et al. (2021). Chitosan-based nanoparticles against bacterial infections. Carbohydr Polym 251: 117108. DOI: 10.1016/j.carbpol.2020.117108.
Go to original source...
Go to PubMed...
- Sam S, Joseph B, Thomas S (2023). Exploring the antimicrobial features of biomaterials for biomedical applications. Results Eng 17: 100979. DOI: 10.1016/j.rineng.2023.100979.
Go to original source...
- Sangnim T, Puri V, Dheer D, Venkatesh DN, Huanbutta K, Sharma A (2024). Nanomaterials in the Wound Healing Process: New Insights and Advancements. Pharmaceutics 16(3): 300. DOI: 10.3390/pharmaceutics16030300.
Go to original source...
Go to PubMed...
- Saravanan H, Subramani T, Rajaramon S, David H, Sajeevan A, Sujith S, Solomon AP (2023). Exploring nanocomposites for controlling infectious microorganisms: charting the path forward in antimicrobial strategies. Front Pharmacol 14: 1282073. DOI: 10.3389/fphar.2023.1282073.
Go to original source...
Go to PubMed...
- Sharmin S, Rahaman MM, Sarkar C, Atolani O, Islam MT, Adeyemi OS (2021). Nanoparticles as antimicrobial and antiviral agents: A literature-based perspective study. Heliyon 7(3): e06456. DOI: 10.1016/j.heliyon.2021.e06456.
Go to original source...
Go to PubMed...
- Singh BN, Shah H, Patil PS, Ashfaq M, Singh A, Upadhyay GC (2022). Zinc Oxide Nanoflakes Mechanism of Action: A Future Prospective Nanomedicine Against CRE Infections. J Pharm Negat Results 13(5): 2618-2625. DOI: 10.47750/pnr.2022.13.s05.403.
Go to original source...
- Srinivasan S, Jothibas M, Nesakumar N (2023). Fabrication of functional nanoparticles onto textile surfaces with the use ofmetal (oxide) nanoparticles and biopolymers. Antiviral and Antimicrobial Coatings Based on Functionalized Nanomaterials, pp. 421-444. DOI: 10.1016/B978-0-323-91783-4.00020-6.
Go to original source...
- Teng J, Imani S, Zhou A, Zhao Y, Du L, Deng S, et al. (2023). Combatting resistance: Understanding multi-drug resistant pathogens in intensive care units. Biomed Pharmacother 167: 115564. DOI: 10.1016/j.biopha.2023.115564.
Go to original source...
Go to PubMed...
- Torres-Ramos MI, Martín-Camacho UJ, González JL, Yañez-Acosta MF, Becerra-Solano L, Gutiérrez-Mercado YK, et al. (2022). A Study of Zn-Ca Nanocomposites and Their Antibacterial Properties. Int J Mol Sci 23(13): 7258. DOI: 10.3390/ijms23137258.
Go to original source...
Go to PubMed...
- Tsikourkitoudi V, Henriques-Normark B, Sotiriou GA (2022). Inorganic nanoparticle engineering against bacterial infections. Curr Opin Chem Eng 38: 100872. DOI: 10.1016/j.coche.2022.100872.
Go to original source...
- Uddin TM, Chakraborty AJ, Khusro A, Zidan BRM, Mitra S, Emran TB, et al. (2021). Antibiotic resistance in microbes: History, mechanisms, therapeutic strategies and future prospects. J Infect Public Health 14(12): 1750-1766. DOI: 10.1016/j.jiph.2021.10.020.
Go to original source...
Go to PubMed...
- Vanamala K, Tatiparti K, Bhise K, Sau S, Scheetz MH, Rybak MJ, et al. (2021). Novel approaches for the treatment of methicillin-resistant Staphylococcus aureus: Using nanoparticles to overcome multidrug resistance. Drug Discov Today 26(1): 31-43. DOI: 10.1016/j.drudis.2020.10.011.
Go to original source...
Go to PubMed...
- Velusamy P, Su CH, Kannan K, Kumar GV, Anbu P, Gopinath SCB (2022). Surface engineered iron oxide nanoparticles as efficient materials for antibiofilm application. Biotechnol Appl Biochem 69(2): 714-725. DOI: 10.1002/bab.2146.
Go to original source...
Go to PubMed...
- Waktole G, Chala B (2023). The Role of Biosynthesized Metallic and Metal Oxide Nanoparticles in Combating Anti-Microbial Drug Resilient Pathogens. J Biomater Nanobiotechnol 14(1): 1-22. DOI: 10.4236/jbnb.2023.141001.
Go to original source...
- Wang L, Hu C, Shao L (2017). The antimicrobial activity of nanoparticles: Present situation and prospects for the future. Int J Nanomedicine 14: 1227-1249. DOI: 10.2147/IJN.S121956.
Go to original source...
Go to PubMed...
- Wang Z, Zeng Y, Ahmed Z, Qin H, Bhatti IA, Cao H (2024). Calcium-dependent antimicrobials: Nature-inspired materials and designs. Exploration 4(5): 20230099. DOI: 10.1002/EXP.20230099.
Go to original source...
Go to PubMed...
- Westmeier D , Hahlbrock A , Reinhardt C , Fröhlich-Nowoisky J, Wessler S , Vallet C , et al. (2018). Nanomaterial-microbe cross-talk: physicochemical principles and (patho)biological consequences. Chem Soc Rev 47(14): 5312-5337. DOI: 10.1039/c6cs00691d.
Go to original source...
Go to PubMed...
- Yousefi M, Dadashpour M, Hejazi M, Hasanzadeh M, Behnam B, de la Guardia M, et al. (2017). Anti-bacterial activity of graphene oxide as a new weapon nanomaterial to combat multidrug-resistance bacteria. Mater Sci Eng C Matel Biol Appl 74: 568-581. DOI: 10.1016/j.msec.2016.12.125.
Go to original source...
Go to PubMed...
- Yousefian F, Hesari R, Jensen T, Obagi S, Rgeai A, Damiani G, et al. (2023). Antimicrobial Wound Dressings: A Concise Review for Clinicians. Antibiotics 12(9): 1434. DOI: 10.3390/antibiotics12091434.
Go to original source...
Go to PubMed...
- Zaha DC, Kiss R, Hegedûs C, Gesztelyi R, Bombicz M, Muresan M, et al. (2019). Recent advances in investigation, prevention, and management of healthcare-associated infections (hais): Resistant multidrug strain colonization and its risk factors in an intensive care unit of a university hospital. Biomed Res Int 2019: 2510875. DOI: 10.1155/2019/2510875.
Go to original source...
Go to PubMed...
- Zohra T, Numan M, Ikram A, Salman M, Khan T, Din M, et al. (2021). Cracking the challenge of antimicrobial drug resistance with crispr/cas9, nanotechnology and other strategies in ESKAPE pathogens. Microorganisms 9(5): 954. DOI: 10.3390/microorganisms9050954.
Go to original source...
Go to PubMed...
This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.