J Appl Biomed 23:63-79, 2025 | DOI: 10.32725/jab.2025.007

Berberine improves atrial remodeling by regulating the AMPK/PPARα signaling pathway in a rabbit model of atrial fibrillation

Yang Wang *a, Zhe Suna, Zong-tao Yin, Jian Zhang, Fang-ran Xin, Yin-li Xu, Huai Lan
General Hospital of Northern Theater Command, Department of Cardiovascular Surgery, Shenyang, Liaoning, China

Atrial fibrillation (AF) is a common arrhythmia encountered in clinical practice, characterized by myocardial fibrosis and atrial remodeling as its primary pathological features, and associated with significantly high mortality and disability rates. Currently, there are no specific pharmacological treatments for AF, and traditional anti-arrhythmic drugs have not achieved the desired efficacy, often resulting in a high incidence of adverse drug reactions. Thus, there is an urgent need for the development of novel anti-AF medications. Berberine, the main active component of Coptis chinensis, has been shown to have antiarrhythmic and anti-heart failure effects. However, its potential to improve atrial fibrosis and remodeling resulting from AF remains largely unexplored. In this study, we used a rapid atrial pacing (RAP) procedure to establish a rabbit model of AF associated with atrial fibrosis. Our objective was to assess the inhibitory effects of berberine on myocardial fibrosis, evaluate its impact on atrial remodeling, and investigate its underlying molecular mechanisms. Our findings indicate that berberine reduces left atrial weight and the area of myocardial fibrosis, inhibits the expression of α-SMA protein in atrial tissue, and decreases the levels of inflammation and oxidative stress. In addition, berberine effectively inhibits atrial remodeling, which may contribute to the prevention of AF. Through transcriptomics, molecular docking, and molecular dynamics simulations, we have tentatively confirmed that berberine may activate the AMPK-PPARα signaling pathway by directly binding to AMPK and PPARα, thereby improving atrial fibrillation.

Keywords: AMPK-PPARα pathway; Atrial fibrillation; Atrial remodeling; Berberine; Rapid atrial pacing
Grants and funding:

This research was supported by the Natural Science Foundation of Liaoning Province (No. 2024-MS-251).

Conflicts of interest:

The authors declare that they have no known competing financial interests or personal relationships that could have influenced the work reported in this paper.

Received: January 9, 2025; Revised: May 8, 2025; Accepted: May 26, 2025; Prepublished online: May 27, 2025; Published: June 27, 2025  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Wang Y, Sun Z, Yin Z, Zhang J, Xin F, Xu Y, Lan H. Berberine improves atrial remodeling by regulating the AMPK/PPARα signaling pathway in a rabbit model of atrial fibrillation. J Appl Biomed. 2025;23(2):63-79. doi: 10.32725/jab.2025.007. PubMed PMID: 40583339.
Download citation

References

  1. Ali M, Pulli B, Courties G, Tricot B, Sebas M, Iwamoto Y, et al. (2016). Myeloperoxidase Inhibition Improves Ventricular Function and Remodeling After Experimental Myocardial Infarction. JACC Basic Transl Sci 1(7): 633-643. DOI: 10.1016/j.jacbts.2016.09.004. Go to original source... Go to PubMed...
  2. An N, Zhang G, Li Y, Yuan C, Yang F, Zhang L, et al. (2022). Promising Antioxidative Effect of Berberine in Cardiovascular Diseases. Front Pharmacol 13: 865353. DOI: 10.3389/fphar.2022.865353. Go to original source... Go to PubMed...
  3. Balan AI, Halațiu VB, Scridon A (2024). Oxidative Stress, Inflammation, and Mitochondrial Dysfunction: A Link between Obesity and Atrial Fibrillation. Antioxidants (Basel) 13(1): 117. DOI: 10.3390/antiox13010117. Go to original source... Go to PubMed...
  4. Begg GA, Swoboda PP, Karim R, Oesterlein T, Rhode K, Holden AV, et al. (2020). Imaging, biomarker and invasive assessment of diffuse left ventricular myocardial fibrosis in atrial fibrillation. J Cardiovasc Magn Reson 22(1): 13. DOI: 10.1186/s12968-020-0603-y. Go to original source... Go to PubMed...
  5. Brenyo AJ, Aktas MK (2011). Non-pharmacologic management of atrial fibrillation. Am J Cardiol 108(2): 317-325. DOI: 10.1016/j.amjcard.2011.03.043. Go to original source... Go to PubMed...
  6. Cheng D, Liu P, Wang Z (2022). Palmatine attenuates the doxorubicin-induced inflammatory response, oxidative damage and cardiomyocyte apoptosis. Int Immunopharmacol, 106: 108583. DOI: 10.1016/j.intimp.2022.108583. Go to original source... Go to PubMed...
  7. Dong Y, Liao J, Yao K, Jiang W, Wang J (2017). Application of Traditional Chinese Medicine in Treatment of Atrial Fibrillation. Evid Based Complement Alternat Med 2017: 1381732. DOI: 10.1155/2017/1381732. Go to original source... Go to PubMed...
  8. Feng X, Sureda A, Jafari S, Memariani Z, Tewari D, Annunziata G, et al. (2019). Berberine in Cardiovascular and Metabolic Diseases: From Mechanisms to Therapeutics. Theranostics 9(7): 1923-1951. DOI: 10.7150/thno.30787. Go to original source... Go to PubMed...
  9. Fu H, Li G, Liu C, Li J, Wang X, Cheng L, Liu T (2015). Probucol prevents atrial remodeling by inhibiting oxidative stress and TNF-α/NF-κB/TGF-β signal transduction pathway in alloxan-induced diabetic rabbits. J Cardiovasc Electrophysiol 26(2): 211-222. DOI: 10.1111/jce.12540. Go to original source... Go to PubMed...
  10. Gao L, Liu Y, Guo S, Xiao L, Wu L, Wang Z, et al. (2018). LAZ3 protects cardiac remodeling in diabetic cardiomyopathy via regulating miR-21/PPARa signaling. Biochim Biophys Acta Mol Basis Dis 1864(10): 3322-3338. DOI: 10.1016/j.bbadis.2018.07.019. Go to original source... Go to PubMed...
  11. Gutierrez C, Blanchard DG (2016). Diagnosis and Treatment of Atrial Fibrillation. Am Fam Physician 94(6): 442-452.
  12. Hanna A, Frangogiannis NG (2020). Inflammatory Cytokines and Chemokines as Therapeutic Targets in Heart Failure. Cardiovasc Drugs Ther 34(6): 849-863. DOI: 10.1007/s10557-020-07071-0. Go to original source... Go to PubMed...
  13. Jalife J, Kaur K (2015). Atrial remodeling, fibrosis, and atrial fibrillation. Trends Cardiovasc Med 25(6): 475-484. DOI: 10.1016/j.tcm.2014.12.015. Go to original source... Go to PubMed...
  14. Jia X, Shao W, Tian S (2022). Berberine alleviates myocardial ischemia-reperfusion injury by inhibiting inflammatory response and oxidative stress: the key function of miR-26b-5p-mediated PTGS2/MAPK signal transduction. Pharm Biol 60(1): 652-663. DOI: 10.1080/13880209.2022.2048029. Go to original source... Go to PubMed...
  15. Karam BS, Chavez-Moreno A, Koh W, Akar JG, Akar FG (2017). Oxidative stress and inflammation as central mediators of atrial fibrillation in obesity and diabetes. Cardiovasc Diabetol 16(1): 120. DOI: 10.1186/s12933-017-0604-9. Go to original source... Go to PubMed...
  16. Lavie CJ, Pandey A, Lau DH, Alpert MA, Sanders P (2017). Obesity and Atrial Fibrillation Prevalence, Pathogenesis, and Prognosis: Effects of Weight Loss and Exercise. J Am Coll Cardiol 70(16): 2022-2035. DOI: 10.1016/j.jacc.2017.09.002. Go to original source... Go to PubMed...
  17. Li Z, Geng YN, Jiang JD, Kong WJ (2014). Antioxidant and anti-inflammatory activities of berberine in the treatment of diabetes mellitus. Evid Based Complement Alternat Med 2014: 289264. DOI: 10.1155/2014/289264. Go to original source... Go to PubMed...
  18. Liu D, Chen H, Fu Y, Yao Y, He S, Wang Y, et al. (2023a). KCa3.1 Promotes Proinflammatory Exosome Secretion by Activating AKT/Rab27a in Atrial Myocytes during Rapid Pacing. Cardiovasc Ther 2023: 3939360. DOI: 10.1155/2023/3939360. Go to original source... Go to PubMed...
  19. Liu T, Zhao H, Li J, Korantzopoulos P, Li G (2014). Rosiglitazone attenuates atrial structural remodeling and atrial fibrillation promotion in alloxan-induced diabetic rabbits. Cardiovasc Ther 32(4): 178-183. DOI: 10.1111/1755-5922.12079. Go to original source... Go to PubMed...
  20. Liu X, Zhang W, Luo J, Shi W, Zhang X, Li Z, et al. (2023b). TRIM21 deficiency protects against atrial inflammation and remodeling post myocardial infarction by attenuating oxidative stress. Redox Biol 62: 102679. DOI: 10.1016/j.redox.2023.102679. Go to original source... Go to PubMed...
  21. Lv W, Zhang L, Cheng X, Wang H, Qin W, Zhou X, Tang B (2020). Apelin Inhibits Angiotensin II-Induced Atrial Fibrosis and Atrial Fibrillation via TGF-β1/Smad2/α-SMA Pathway. Front Physiol 11: 583570. DOI: 10.3389/fphys.2020.583570. Go to original source... Go to PubMed...
  22. Nattel S (2017). Molecular and Cellular Mechanisms of Atrial Fibrosis in Atrial Fibrillation. JACC Clin Electrophysiol 3(5): 425-435. DOI: 10.1016/j.jacep.2017.03.002. Go to original source... Go to PubMed...
  23. Park J, Song H, Moon S, Kim Y, Cho S, Han K, et al. (2024). Cardiometabolic benefits of fenofibrate in heart failure related to obesity and diabetes. Cardiovasc Diabetol 23(1): 343. DOI: 10.1186/s12933-024-02417-6. Go to original source... Go to PubMed...
  24. Pedro B, Fontes-Sousa ASP, Gelzer AR (2020). Diagnosis and management of canine atrial fibrillation. Vet J 265: 105549. DOI: 10.1016/j.tvjl.2020.105549. Go to original source... Go to PubMed...
  25. Qin X, Liu P, Jin L, Zhu K, Yang Y, Hou Z, et al. (2024). Exerkine β-aminoisobutyric acid protects against atrial structural remodeling and atrial fibrillation in obesity via activating AMPK signaling and improving insulin sensitivity. Biomed Pharmacother 171: 116137. DOI: 10.1016/j.biopha.2024.116137. Go to original source... Go to PubMed...
  26. Qing Y, Dong X, Hongli L, Yanhui L (2018). Berberine promoted myocardial protection of postoperative patients through regulating myocardial autophagy. Biomed Pharmacother 105: 1050-1053. DOI: 10.1016/j.biopha.2018.06.088. Go to original source... Go to PubMed...
  27. Ramos-Mondragón R, Lozhkin A, Vendrov AE, Runge MS, Isom LL, Madamanchi NR (2023). NADPH Oxidases and Oxidative Stress in the Pathogenesis of Atrial Fibrillation. Antioxidants (Basel) 12(10): 1833. DOI: 10.3390/antiox12101833. Go to original source... Go to PubMed...
  28. Rillig A, Magnussen C, Ozga AK, Suling A, Brandes A, Breithardt G, et al. (2021). Early Rhythm Control Therapy in Patients With Atrial Fibrillation and Heart Failure. Circulation 144(11): 845-858. DOI: 10.1161/CIRCULATIONAHA.121.056323. Go to original source... Go to PubMed...
  29. Sagris M, Vardas EP, Theofilis P, Antonopoulos AS, Oikonomou E, Tousoulis D (2021). Atrial Fibrillation: Pathogenesis, Predisposing Factors, and Genetics. Int J Mol Sci 23(1): 6. DOI: 10.3390/ijms23010006. Go to original source... Go to PubMed...
  30. Sharma P, Raju B, Narendra G, Sapra B, Silakari O (2022). Molecular Docking, Dynamics, and WaterSwap Analysis to Identify Anti-aggregating Agents of Insulin and IFN-β. Appl Biochem Biotechnol 194(7): 3261-3279. DOI: 10.1007/s12010-022-03881-0. Go to original source... Go to PubMed...
  31. Shu H, Cheng J, Li N, Zhang Z, Nie J, Peng Y, et al. (2023). Obesity and atrial fibrillation: a narrative review from arrhythmogenic mechanisms to clinical significance. Cardiovasc Diabetol 22(1): 192. DOI: 10.1186/s12933-023-01913-5. Go to original source... Go to PubMed...
  32. Song J (2022). The Chinese burden of atrial fibrillation review of atrial fibrillation studies in China. Ann Noninvasive Electrocardiol 27(6): e12957. DOI: 10.1111/anec.12957. Go to original source... Go to PubMed...
  33. Song D, Hao J, Fan D (2020). Biological properties and clinical applications of berberine. Front Med 14(5): 564-582. DOI: 10.1007/s11684-019-0724-6. Go to original source... Go to PubMed...
  34. Souza-Neto FV, Islas F, Jiménez-González S, Luaces M, Ramchandani B, Romero-Miranda A, et al. (2022). Mitochondrial Oxidative Stress Promotes Cardiac Remodeling in Myocardial Infarction through the Activation of Endoplasmic Reticulum Stress. Antioxidants (Basel) 11(7): 1232. DOI: 10.3390/antiox11071232. Go to original source... Go to PubMed...
  35. Sun Z, Wang Y, Pang X, Wang X, Zeng H (2023). Mechanisms of polydatin against spinal cord ischemia-reperfusion injury based on network pharmacology, molecular docking and molecular dynamics simulation. Bioorg Chem 140: 106840. DOI: 10.1016/j.bioorg.2023.106840. Go to original source... Go to PubMed...
  36. Wang D, Wang X, Yang T, Tian H, Su Y, Wang Q (2023). Long Non-Coding RNA Dancr Affects Myocardial Fibrosis in Atrial Fibrillation Mice via the MicroRNA-146b-5p/Smad5 Axis. Acta Cardiol Sin 39(6): 841-853. DOI: 10.6515/ACS.202311_39(6).20230619B. Go to original source... Go to PubMed...
  37. Wang K, Feng X, Chai L, Cao S, Qiu F (2017a). The metabolism of berberine and its contribution to the pharmacological effects. Drug Metab Rev 49(2): 139-157. DOI: 10.1080/03602532.2017.1306544. Go to original source... Go to PubMed...
  38. Wang M, Zhou F, Luo Y, Deng X, Chen X, Yi Q (2024). The transcription factor PPARA mediates SIRT1 regulation of NCOR1 to protect damaged heart cells. Cardiovasc Diagn Ther 14(5): 832-847. DOI: 10.21037/cdt-24-101. Go to original source... Go to PubMed...
  39. Wang Z, Tang Z, Zhu W, Ge L, Ge J (2017b). Efficacy and safety of traditional Chinese medicine on thromboembolic events in patients with atrial fibrillation: A systematic review and meta-analysis. Complement Ther Med 32: 1-10. DOI: 10.1016/j.ctim.2017.03.006. Go to original source... Go to PubMed...
  40. Xu H, Li O, Kim D, Xue M, Bao Z, Yang F (2024). Aged microbiota exacerbates cardiac failure by PPARα/PGC1α pathway. Biochim Biophys Acta Mol Basis Dis 1870(7): 167271. DOI: 10.1016/j.bbadis.2024.167271. Go to original source... Go to PubMed...
  41. Yang KT, Chao TH, Wang IC, Luo YP, Ting PC, Lin JH, Chang JC et al. (2022). Berberine protects cardiac cells against ferroptosis. Tzu Chi Med J 34(3): 310-317. DOI: 10.4103/tcmj.tcmj_236_21. Go to original source... Go to PubMed...
  42. Yuan M, Gong M, He J, Xie B, Zhang Z, Meng L, et al. (2022). IP3R1/GRP75/VDAC1 complex mediates endoplasmic reticulum stress-mitochondrial oxidative stress in diabetic atrial remodeling. Redox Biol 52: 102289. DOI: 10.1016/j.redox.2022.102289. Go to original source... Go to PubMed...
  43. Zhang J, Wang G, Shi Y, Liu X, Liu S, Chen W, et al. (2024). Growth differentiation factor 11 regulates high glucose-induced cardiomyocyte pyroptosis and diabetic cardiomyopathy by inhibiting inflammasome activation. Cardiovasc Diabetol 23(1): 160. DOI: 10.1186/s12933-024-02258-3. Go to original source... Go to PubMed...
  44. Zhao J, Yu L, Xue X, Xu Y, Huang T, Xu D, et al. (2023). Diminished β7 nicotinic acetylcholine receptor (α7nAChR) rescues amyloid- induced atrial remodeling by oxi-CaMKII/MAPK/AP-1 axis-mediated mitochondrial oxidative stress. Redox Biol 59: 102594. DOI: 10.1016/j.redox.2022.102594. Go to original source... Go to PubMed...
  45. Zhou ZW, Zheng HC, Zhao LF, Li W, Hou JW, Yu Y, et al. (2015). Effect of berberine on acetylcholine-induced atrial fibrillation in rabbit. Am J Transl Res 7(8): 1450-1457.
  46. Zhu X, Bian H, Wang L, Sun X, Xu X, Yan H, et al. (2019). Berberine attenuates nonalcoholic hepatic steatosis through the AMPK-SREBP-1c-SCD1 pathway. Free Radic Biol Med 141: 192-204. DOI: 10.1016/j.freeradbiomed.2019.06.019. Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.