J Appl Biomed 15:112-118, 2017 | DOI: 10.1016/j.jab.2016.11.003

Electromagnetic field (10 Hz, 1 mT) protects mesenchymal stem cells from oxygen-glucose deprivation-induced cell death by reducing intracellular Ca2+ and reactive oxygen species

Jong Hyeok Jung*, Jae Young Kim*
Department of Life Science, Gachon University, Seongnam-Si, Republic of Korea

Protective effects of electromagnetic fields (EMFs) against oxygen and glucose deprivation (OGD)-induced human mesenchymal stem cell (MSC) death were studied. Cell survival, intracellular calcium and ROS/RNS levels were measured after culturing MSCs for 3 h under OGD with or without EMF exposure. The survival rate of cells cultured under OGD condition was significantly reduced compared to control cells, while cells cultured in OGD with 10 Hz/1 mT EMF exposure had higher survival ratio than that in equivalent non-exposed cells. This protective effect of EMF was not observed at different frequency/intensity combinations such as 10 Hz/0.01 mT, 10 Hz/0.1 mT, 50 Hz/1 mT and 100 Hz/1 mT. ROS/RNS levels of cells cultured under OGD conditions significantly increased compared to the control level while 10 Hz/1 mT EMF alleviated this effect. Intracellular calcium levels in OGD group were higher than control while those in OGD plus 10 Hz/1 mT EMF group were significantly lower than OGD group. Addition of Ca2+ chelator promoted protective effects of EMF against OGD-induced MSC death. Our results suggest that 10 Hz/1 mT EMF exposure protects MSCs from OGD-induced cell death and the underlying mechanisms of the protection are reduction of intracellular levels of Ca2+ and ROS/RNS.

Keywords: Ca2+; Electromagnetic fields; Mesenchymal stem cell; Oxygen and glucose deprivation; Reactive oxygen species

Received: June 22, 2016; Revised: October 25, 2016; Accepted: November 3, 2016; Published: May 1, 2017  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Hyeok Jung J, Young Kim J. Electromagnetic field (10 Hz, 1 mT) protects mesenchymal stem cells from oxygen-glucose deprivation-induced cell death by reducing intracellular Ca2+ and reactive oxygen species. J Appl Biomed. 2017;15(2):112-118. doi: 10.1016/j.jab.2016.11.003.
Download citation

References

  1. Abramov, A.Y., Scorziello, A., Duchen, M.R., 2007. Three distinct mechanisms generate oxygen free radicals in neurons and contribute to cell death during anoxia and reoxygenation. J. Neurosci. 27, 1129-1138. Go to original source... Go to PubMed...
  2. Aggarwal, S., Pittenger, M.F., 2005. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105, 1815-1822. Go to original source... Go to PubMed...
  3. Bánfi, B., Molnár, G., Maturana, A., Steger, K., HegedÛs, B., Demaurex, N., Krause, K.H., 2001. A Ca2+-activated NADPH oxidase in testis, spleen, and lymph nodes. J. Biol. Chem. 276, 37594-37601. Go to original source... Go to PubMed...
  4. Beck, J., Lenart, B., Kintner, D.B., Sun, D., 2003. Na-K-Cl cotransporter contributes to glutamate-mediated excitotoxicity. J. Neurosci. 23, 5061-5068. Go to original source... Go to PubMed...
  5. Beske, P.H., Jackson, D.A., 2012. NADPH oxidase mediates the oxygen-glucose deprivation/reperfusion-induced increase in the tyrosine phosphorylation of the N-methyl-daspartate receptor NR2A subunit in retinoic acid differentiated SH-SY5Y Cells. J. Mol. Signal. 7, 15. Go to original source... Go to PubMed...
  6. Caplan, A.I., Dennis, J.E., 2006. Mesenchymal stem cells as trophic mediators. J. Cell. Biochem. 98, 1076-1084. Go to original source... Go to PubMed...
  7. Chen, J., Li, Y., Wang, L., Zhang, Z., Lu, D., Lu, M., Chopp, M., 2001. Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats. Stroke 32, 1005-1011. Go to original source... Go to PubMed...
  8. Chen, X., Li, Y., Wang, L., Katakowski, M., Zhang, L., Chen, J., Xu, Y., Gautam, S.C., Chopp, M., 2002. Ischemic rat brain extracts induce human marrow stromal cell growth factor production. Neuropathology 22, 275-279. Go to original source... Go to PubMed...
  9. Chen, J., Li, Y., Katakowski, M., Chen, X., Wang, L., Lu, D., Lu, M., Gautam, S.C., Chopp, M., 2003. Intravenous bone marrow stromal cell therapy reduces apoptosis and promotes endogenous cell proliferation after stroke in female rat. J. Neurosci. Res. 73, 778-786. Go to original source... Go to PubMed...
  10. Chen, X., Armstrong, M.A., Li, G., 2006. Mesenchymal stem cells in immunoregulation. Immunol. Cell Biol. 84, 413-421. Go to original source... Go to PubMed...
  11. Choi, D.W., 1988. Calcium-mediated neurotoxicity: relationship specific channel types and role in ischemic damage. Trends Neurosci. 11, 465-469. Go to original source... Go to PubMed...
  12. Choi, D.W., 1995. Calcium: still center-stage in hypoxic-ischemic neuronal death. Trends Neurosci. 18, 58-60. Go to original source...
  13. Conti, P., Gigante, G.E., Alesse, E., Cifone, M.G., Fieschi, C., Reale, M., Angeletti, P.U., 1985. A role for calcium in the effect of very low frequency electromagnetic field on the blastogenesis of human lymphocytes. FEBS Lett. 181, 28-32. Go to original source... Go to PubMed...
  14. Crigler, L., Robey, R.C., Asawachaicharn, A., Gaupp, D., Phinney, D.G., 2006. Human mesenchymal stem cell subpopulations express a variety of neuro-regulatory molecules and promote neuronal cell survival and neuritogenesis. Exp. Neurol. 198, 54-64. Go to original source... Go to PubMed...
  15. Domoki, F., Kis, B., Gáspár, T., Snipes, J.A., Parks, J.S., Bari, F., Bushija, D.W., 2009. Rosuvastatin induces delayed preconditioning against oxygen-glucose deprivation in cultured cortical neurons. Am. J. Physiol. Cell Physiol. 296, 97- 105. Go to original source... Go to PubMed...
  16. Duong, C.N., Kim, J.Y., 2016. Exposure to electromagnetic field attenuates oxygenglucose deprivation-induced microglial cell death by reducing intracellular Ca2+ and ROS. Int. J. Radiat. Biol. 92, 195-201. Go to original source... Go to PubMed...
  17. Dykens, J.A., Stern, A., Trenkner, E., 1987. Mechanism of kainate toxicity to cerebellar neurons in vitro is analogous to reperfusion tissue injury. J. Neurochem. 49, 1222-1228. Go to original source... Go to PubMed...
  18. George, I., Geddis, M.S., Lill, Z., Lin, H., Gomez, T., Blank, M., Oz, M.C., Goodman, R., 2008. Myocardial function improved by electromagnetic field induction of stress protein hsp70. J. Cell. Physiol. 216, 816-823. Go to original source... Go to PubMed...
  19. Golbach, L.A., Philippi, J.G.M., Cuppen, J.J.M., Savelkoul, H.F.J., LidyVerburg-van Kemenade, B.M., 2015. Calcium signaling in human neutrophil cell lines is not affected by low-frequency electromagnetic fields. Bioelectromagnetics 36, 430- 443. Go to original source... Go to PubMed...
  20. Gomes, A., Fernandes, E., Lima, J.L.F.C., 2005. Fluorescence probes used for detection of reactive oxygen species. J. Biochem. Biophys. Methods 65, 45-80. Go to original source... Go to PubMed...
  21. Grassi, C., D'Ascenzo, M., Torsello, A., Martinotti, G., Wolf, F., Cittadini, A., Azzena, G. B., 2004. Effects of 50 Hz electromagnetic fields on voltage-gated Ca2+ channels and their role in modulation of neuroendocrine cell proliferation and death. Cell Calcium 35, 307-315. Go to original source... Go to PubMed...
  22. Guo, H., Hu, L.M., Wang, S.X., Wang, Y.L., Shi, F., Li, H., Liu, Y., Kang, L.Y., Gao, X.M., 2011. Neuroprotective effects of scutellarin against hypoxic-ischemic-induced cerebral injury via augmentation of antioxidant defense capacity. Chin. J. Physiol. 54, 399-405.
  23. Harrison, R., 2004. Physiological roles of xanthine oxidoreductase. Drug Metab. Rev. 36, 363-375. Go to original source... Go to PubMed...
  24. Henrykowska, G., Jankowski, W., Pacholski, K., Lewicka, M., Smigielski, J., Dziedziczak-Buczyn  ska, M., Buczyn  ski, A., 2009. The effect of 50 Hz magnetic field of different shape on oxygen metabolism in blood platelets: in vitro studies. Int. J. Occup. Med. Environ. Health 22, 269-276. Go to original source... Go to PubMed...
  25. Holzwarth, C., Vaegler, M., Gieseke, F., Pfister, S.M., Handgretinger, R., Kerst, G., Müller, I., 2010. Low physiologic oxygen tensions reduce proliferation and differentiation of human multipotent mesenchymal stromal cells. BMC Cell Biol. 11, 11. Go to original source... Go to PubMed...
  26. Howard, R.S., Holmes, P.A., Koutroumanidis, M.A., 2011. Hypoxic-ischaemic brain injury. Pract. Neurol. 11, 4-18. Go to original source... Go to PubMed...
  27. Kalyanaraman, B., Darley-Usmar, V., Davies, K.J., Dennery, P.A., Forman, H.J., Grisham, M.B., Mann, G.E., Moore, K., Roberts 2nd, L.J., Ischiropoulos, H., 2012. Measuring reactive oxygen and nitrogen species with fluorescent probes: challenges and limitations. Free Radic. Biol. Med. 52, 1-6. Go to original source... Go to PubMed...
  28. Kornekov, A.L., Pahnake, J., Frei, K., Warzok, R., Schroder, H.W., Frick, R., Muljana, L., Piek, J., Yonekawa, Y., Gaab, M.R., 2000. Treatment with nimodipine and mannitol reduces programed cell and infarct size following focal cerebral ischemia. Neurosurg. Rev. 23, 145-150. Go to original source... Go to PubMed...
  29. Kotani, Y., Nakajima, Y., Hasegawa, T., Satoh, M., Nagase, H., Shimazawa, M., Yoshimura, S., Iwama, T., Hara, H., 2008. Propofol exerts greater neuroprotection with disodium edetate than without it. J. Cereb. Blood Flow Metab. 28, 354-366. Go to original source... Go to PubMed...
  30. Kurozumi, K., Nakamura, K., Tamiya, T., Kawano, Y., Ishii, K., Kobune, M., Hirai, S., Uchida, H., Sasaki, K., Ito, Y., Kato, K., Honmou, O., Date, I., Hamada, H., 2005. Mesenchymal stem cells that produce neurotrophic factors reduce ischemic damage in the rat middle cerebral artery occlusion model. Mol. Ther. 11, 96-104. Go to original source... Go to PubMed...
  31. Lee, R.H., Pulin, A.A., Seo, M.J., Kota, D.J., Ylostalo, J., Larson, B.L., Semprun-Prieto, L., Delafontaine, P., Prockop, D.J., 2009. Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6. Cell Stem Cell 5, 54-63. Go to original source... Go to PubMed...
  32. Lim, S., Kim, S.C., Kim, J.Y., 2015. Protective effect of 10-Hz, 1-mT electromagnetic field exposure against hypoxia/reoxygenation injury in HK-2 cells. Biomed. Environ. Sci. 28, 231-234.
  33. Lindstrom, E., Lindstrom, P., Berglund, A., Lundgren, E., Mild, K.H., 1995. lntracellular calcium oscillations in a T-cell line after exposure to extremely-low-frequency magnetic fields with variable frequencies and flux densities. Bioelectromagnetics 16, 41-47. Go to original source... Go to PubMed...
  34. Lisi, A., Ledda, M., Rosola, E., Pozzi, D., D'Emilia, E., Giuliani, L., Foletti, A., Modesti, A., Morris, S.J., Grimaldi, S., 2006. Extremely low frequency electromagnetic field exposure promotes differentiation of pituitary corticotrope-derived AtT20 D16V cells. Bioelectromagnetics 27, 641-651. Go to original source... Go to PubMed...
  35. Manning, A.S., Coltart, D.J., Hearse, D.J., 1984. Ischemia and reperfusion induced arrhythmias in the rat. Effects of xanthine oxidase inhibition with allopurinol. Circ. Res. 55, 545-548. Go to original source... Go to PubMed...
  36. Miller, E.W., Albers, A.E., Pralle, A., Isacoff, E.Y., Chang, C.J., 2005. Boronate-based fluorescent probes for imaging cellular hydrogen peroxide. J. Am. Chem. Soc. 127, 16652-16659. Go to original source... Go to PubMed...
  37. Morgado-Valle, C., Verdugo-Díaz, L., García, D.E., Morales-Orozco, C., Drucker-Colín, R., 1998. The role of voltage-gated Ca2+ channels in neurite growth of cultured chromaffin cells induced by extremely low frequency (ELF) magnetic field stimulation. Cell Tissue Res. 291, 217-230. Go to original source... Go to PubMed...
  38. Nikonenko, I., Bancila, M., Bloc, A., Muller, D., Bijlenga, P., 2005. Inhibition of T-type calcium channels protects neurons from delayed ischemia-induced damage. Mol. Pharmacol. 68, 84-89. Go to original source... Go to PubMed...
  39. Nomura, T., Honmou, O., Harada, K., Houkin, K., Hamada, H., Kocsis, J.D., 2005. I.V. infusion of brain-derived neurotrophic factor gene modified human mesenchymal stem cells protects against injury in a cerebral ischemia model in adult rat. Neuroscience 136, 161-169. Go to original source... Go to PubMed...
  40. Pall, M.L., 2013. Electromagnetic fields act via activation of voltage-gated calcium channels to produce beneficial or adverse effects. J. Cell. Mol. Med. 17, 958-965. Go to original source... Go to PubMed...
  41. Parekkadan, B., van Poll, D., Suganuma, K., Carter, E.A., Berthiaume, F., Tilles, A.W., Yarmush, M.L., 2007. Mesenchymal stem cell-derived molecules reverse fulminant hepatic failure. PLoS One 2, e941. Go to original source... Go to PubMed...
  42. Park, J.E., Seo, Y.K., Yoon, H.H., Kim, C.W., Park, J.K., Jeon, S., 2013. Electromagnetic fields induce neural differentiation of human bone marrow derived mesenchymal stem cells via ROS mediated EGFR activation. Neurochem. Int. 62, 418-424. Go to original source... Go to PubMed...
  43. Pesce, M., Patruno, A., Speranza, L., Reale, M., 2013. Extremely low frequency electromagnetic field and wound healing: implication of cytokines as biological mediators. Eur. Cytokine Netw. 24, 1-10. Go to original source... Go to PubMed...
  44. Piacentini, R., Ripoli, C., Mezzogori, D., Azzena, G.B., Grassi, C., 2008. Extremely lowfrequency electromagnetic fields promote in vitro neurogenesis via upregulation of Ca(v)1-channel activity. J. Cell. Physiol. 215, 129-139. Go to original source... Go to PubMed...
  45. Pisani, A., Calabresi, P., Tozzi, A., D'Angelo, V., Bernardi, G., 1998. L-type Ca2+ channel blockers attenuate electrical changes and Ca2+ rise induced by oxygen/glucose deprivation in cortical neurons. Stroke 29, 196-201. Go to original source... Go to PubMed...
  46. Poniedzialek, B., Rzymski, P., Nawrocka-Bogusz, H., Jaroszyk, F., Wiktorowicz, K., 2013. The effect of electromagnetic field on reactive oxygen species production in human neutrophils in vitro. Electromagn. Biol. Med. 32, 333-341. Go to original source... Go to PubMed...
  47. Rahbar-Roshandel, N., Razavi, L., TavakoliI-Far, B., 2007. Nimodipine protects PC12 cells against oxygen-glucose deprivation. Iran. J. Pharm. Ther. 6, 51-54.
  48. Reale, M., Kamal, M.A., Patruno, A., Costantini, E., D'Angelo, C., Pesce, M., Greig, N.H., 2014. Neuronal cellular responses to extremely low frequency electromagnetic field exposure: implications regarding oxidative stress and neurodegeneration. PLoS One 9, e104973. Go to original source... Go to PubMed...
  49. Scheibe, F., Klein, O., Klose, J., Priller, J., 2012. Mesenchymal stromal cells rescue cortical neurons from apoptotic cell death in an in vitro model of cerebral ischemia. Cell. Mol. Neurobiol. 32, 567-576. Go to original source... Go to PubMed...
  50. Scuteri, A., Cassetti, A., Tredici, G., 2006. Adult mesenchymal stem cells rescue dorsal root ganglia neurons from dying. Brain Res. 1116, 75-81. Go to original source... Go to PubMed...
  51. Shi, H., Liu, K.J., 2006. Effects of glucose concentration on redox status in rat primary cortical neurons under hypoxia. Neurosci. Lett. 410, 57-61. Go to original source... Go to PubMed...
  52. Siesjo, B.K., Bengtsson, F., 1989. Calcium fluxes, calcium antagonists, and calcium related pathology in brain ischemia, hypoglycemia, and spreading depression: a unifying hypothesis. J. Cereb. Blood Flow Metab. 9, 127-140. Go to original source... Go to PubMed...
  53. Suh, S.W., Shin, B.S., Ma, H., Van Hoecke, M., Brennan, A.M., Yenari, M.A., Swanson, R. A., 2008. Glucose and NADPH oxidase drive neuronal superoxide formation in stroke. Ann. Neurol. 64, 654-663. Go to original source... Go to PubMed...
  54. Wagner, W., Roderburg, C., Wein, F., Diehlmann, A., Frankhauser, M., Schubert, R., Eckstein, V., Ho, A.D., 2007. Molecular and secretory profiles of human mesenchymal stromal cells and their abilities to maintain primitive hematopoietic progenitors. Stem Cells 25, 2638-2647. Go to original source... Go to PubMed...
  55. Walder, C.E., Green, S.P., Darbonne, W.C., Mathias, J., Rae, J., Dinauer, M.C., Curnutte, J.T., Thomas, G.R., 1997. Ischemic stroke injury is reduced in mice lacking a functional NADPH oxidase. Stroke 28, 2252-2258. Go to original source... Go to PubMed...
  56. Walleczek, J., Liburdy, R.P., 1990. Nonthermal 60-Hz sinusoidal magnetic-field exposure enhances 45Ca2+ uptake in rat thymocytes: dependence on mitogen activation. FEBS Lett. 271, 157-160. Go to original source... Go to PubMed...
  57. Wang, Q., Tompkins, K.D., Simonyi, A., Korthuis, R.J., Sun, A.Y., Sun, G.Y., 2006. Apocynin protects against global cerebral ischemia-reperfusion induced oxidative stress and injury in the gerbil hippocampus. Brain Res. 1090, 182-189. Go to original source... Go to PubMed...
  58. Wertheimer, N., Leeper, E., 1979. Electrical wiring configurations and childhood cancer. Am. J. Epidemiol. 109, 273-284. Go to original source... Go to PubMed...
  59. Wilkins, A., Kemp, K., Ginty, M., Hares, K., Mallam, E., Scolding, N., 2009. Human bone marrow-derived mesenchymal stem cells secrete brain-derived neurotrophic factor which promotes neuronal survival in vitro. Stem Cell Res. 3, 63-70. Go to original source... Go to PubMed...
  60. Yang, D.C., Yang, M.H., Tsai, C.C., Huang, T.F., Chen, Y.H., Hung, S.C., 2011. Hypoxia inhibits osteogenesis in human mesenchymal stem cells through direct regulation of RUNX2 by TWIST. PLoS One 6, e23965. Go to original source... Go to PubMed...
  61. Zhang, X., Liu, X., Pan, L., Lee, I., 2010. Magnetic fields at extremely low-frequency (50 Hz, 0. 8 mT) can induce the uptake of intracellular calcium levels in osteoblasts. Biochem. Biophys. Res. Commun. 396, 662-666. Go to original source... Go to PubMed...
  62. Zhao, M.Z., Nonoguchi, N., Ikeda, N., Watanabe, T., Furutama, D., Miyazawa, D., Funakoshi, H., Kajimoto, Y., Nakamura, T., Dezawa, M., Shibata, M.A., Otsuki, Y., Coffin, R.S., Liu, W.D., Kuroiwa, T., Miyatake, S., 2006. Novel therapeutic strategy for stroke in rats by bone marrow stromal cells and ex vivo HGF gene transfer with HSV-1 vector. J. Cereb. Blood Flow Metab. 26, 1176-1188. Go to original source... Go to PubMed...
  63. Zhu, W., Chen, J., Cong, X., Hu, S., Chen, X., 2006. Hypoxia and serum deprivationinduced apoptosis in mesenchymal stem cells. Stem Cells 24, 416-425. Go to original source... Go to PubMed...