J Appl Biomed 18:8-17, 2020 | DOI: 10.32725/jab.2020.001

Molecular design, synthesis and biological characterization of novel Resveratrol derivative as potential anticancer agent targeting NF-κB

Zuhier Awan1, Hussam Ibrahim Kutbi2, Aftab Ahmad3, Rabbani Syed4, Faten A. S. Alsulaimany5, Noor Ahmad Shaik6,7,*
1 King Abdulaziz University, Faculty of Medicine, Department of Clinical Biochemistry, Jeddah, Kingdom of Saudi Arabia
2 King Abdulaziz University, Faculty of Pharmacy, Department of Pharmacy Practice, Jeddah, Kingdom of Saudi Arabia
3 King Abdulaziz University, Faculty of Applied Studies, Health Information Technology Department, Jedah, Kingdom of Saudi Arabia
4 King Saud University, College of Pharmacy, Department of Pharmaceutics, Riyadh, Kingdom of Saudi Arabia
5 King Abdulaziz University, Faculty of Science, Department of Biological Sciences, Jeddah, Kingdom of Saudi Arabia
6 King Abdulaziz University, Faculty of Medicine, Department of Genetic Medicine, Jeddah, Kingdom of Saudi Arabia
7 King Abdulaziz University, "Princess Al-Jawhara, Al-Brahim Center of Excellence in Research of Hereditary Disorders", Jeddah, Kingdom of Saudi Arabia

Resveratrol (RESV), an anticancer nutraceutical compound, is known to show poor bioavailability inside the human body. Therefore, this study has designed multiple chemical analogs of RESV compound for improving its pharmacokinetic as well as its anti-cancer properties. Initially, the drug likeliness and ADME-toxicity properties of these new chemical analogs were tested with the help of diverse computational approaches. Then the best predicted RESV derivative is synthesized by the organic method, and its NF-κB mediated anti-tumor activity assessed on histiocytic lymphoma U-937 cells. The new synthetic RESV analog, i.e. (E)-3-(prop-2-yn-1-yloxy)-5-(4-(prop-2-yn-1-yloxy) styryl) phenol has shown a rapid, persistent and better dose-dependent (IC50 of 7.25 μM) decrease in the viability of U937 cells than the native (IC50 of 30 μM) RESV compound. This analog has also demonstrated its potential ability in inducing apoptosis through DNA ladder formation. At 10 µg/ml concentration, this chemical derivative has shown a better NF-κB inhibition (IC50 is 2.45) compared to the native RESV compound (IC50 is 1.95). Molecular docking analysis found that this analog exerts its anti- NF-κB activity (binding energy of -6.78 kcal/mol and Ki 10 µM) by interacting with DNA binding residues (Arg246, Lys444, and Gln606) of p50 chain NF-κB. This study presents a novel RESV analog that could further develop as a potential anti-NF-κB mediated tumor inhibitor.

Keywords: Apoptosis; Chemical analog; Drug designing; Molecular docking; NF-κB; RESV; U-937 cell lines
Grants and funding:

This project was funded by the Deanship of Scientific Research (DSR) at King Abdulaziz University Saudi Arabia, under Grant no. G-499- 140-1439. The authors, therefore, acknowledge the DSR for technical and financial support.

Conflicts of interest:

Authors declare no conflict of interests for this article.

Received: July 4, 2019; Revised: January 5, 2020; Accepted: January 23, 2020; Prepublished online: February 10, 2020; Published: March 1, 2020  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Awan Z, Kutbi HI, Ahmad A, Syed R, Alsulaimany FAS, Shaik NA. Molecular design, synthesis and biological characterization of novel Resveratrol derivative as potential anticancer agent targeting NF-κB. J Appl Biomed. 2020;18(1):8-17. doi: 10.32725/jab.2020.001. PubMed PMID: 34907703.
Download citation

Attachments

Download fileweb_Suppl_fig-1.pdf

File size: 54.92 kB

Download fileweb_Suppl_table-1.pdf

File size: 83.08 kB

Download fileweb_Suppl_fig-2.pdf

File size: 153.76 kB

References

  1. Adhami VM, Afaq F, Ahmad N (2003). Suppression of ultraviolet B exposure-mediated activation of NF-kappaB in normal human keratinocytes by resveratrol. Neoplasia 5: 74-82. Go to original source... Go to PubMed...
  2. Almeida L, Vaz-da-Silva M, Falcao A, Soares E, Costa R, Loureiro AI, et al. (2009). Pharmacokinetic and safety profile of trans-resveratrol in a rising multiple-dose study in healthy volunteers. Mol Nutr Food Res 53(Suppl. 1): S7-15. DOI: 10.1002/mnfr.200800177. Go to original source... Go to PubMed...
  3. Banaganapalli B, Mulakayala C, Pulaganti M, Mulakayala N, Anuradha CM, Suresh Kumar C, et al. (2013). Experimental and computational studies on newly synthesized resveratrol derivative: a new method for cancer chemoprevention and therapeutics? OMICS 17: 568-583. DOI: 10.1089/omi.2013.0014. Go to original source... Go to PubMed...
  4. Berman AY, Motechin RA, Wiesenfeld MY, Holz MK (2017). The therapeutic potential of resveratrol: a review of clinical trials. NPJ Precis Oncol 1: 35. DOI: 10.1038/s41698-017-0038-6. Go to original source... Go to PubMed...
  5. Berman HM, Battistuz T, Bhat TN, Bluhm WF, Bourne PE, Burkhardt K, et al. (2002). The Protein Data Bank. Acta Crystallogr D Biol Crystallogr 58(Pt 6 NO 1): 899-907. DOI: 10.1107/s0907444902003451. Go to original source... Go to PubMed...
  6. Bommagani S, Penthala NR, Balasubramaniam M, Kuravi S, Caldas-Lopes E, Guzman ML, et al. (2019). A novel tetrazole analogue of resveratrol is a potent anticancer agent. Bioorg Med Chem Lett 29: 172-178. DOI: 10.1016/j.bmcl.2018.12.006. Go to original source... Go to PubMed...
  7. Bonfoco E, Krainc D, Ankarcrona M, Nicotera P, Lipton SA (1995). Apoptosis and necrosis: two distinct events induced, respectively, by mild and intense insults with N-methyl-D-aspartate or nitric oxide/superoxide in cortical cell cultures. Proc Natl Acad Sci U S A 92: 7162-7166. DOI: 10.1073/pnas.92.16.7162. Go to original source... Go to PubMed...
  8. Campling BG, Pym J, Galbraith PR, Cole SP (1988). Use of the MTT assay for rapid determination of chemosensitivity of human leukemic blast cells. Leuk Res 12: 823-831. DOI: 10.1016/0145-2126(88)90036-7. Go to original source... Go to PubMed...
  9. Chatterjee A, Ronghe A, Padhye SB, Spade DA, Bhat NK, Bhat HK (2018). Antioxidant activities of novel resveratrol analogs in breast cancer. J Biochem Mol Toxicol 32. DOI: 10.1002/jbt.21925. Go to original source... Go to PubMed...
  10. Chimento A, Sirianni R, Saturnino C, Caruso A, Sinicropi MS, Pezzi V (2016). Resveratrol and Its Analogs As Antitumoral Agents For Breast Cancer Treatment. Mini Rev Med Chem 16(9): 699-709. DOI: 10.2174/1389557516666160321113255. Go to original source... Go to PubMed...
  11. Cottart CH, Nivet-Antoine V, Laguillier-Morizot C, Beaudeux JL (2010). Resveratrol bioavailability and toxicity in humans. Mol Nutr Food Res 54: 7-16. DOI: 10.1002/mnfr.200900437. Go to original source... Go to PubMed...
  12. DiDonato JA, Mercurio F, Karin M (2012). NF-kappaB and the link between inflammation and cancer. Immunol Rev 246: 379-400. DOI: 10.1111/j.1600-065X.2012.01099.x. Go to original source... Go to PubMed...
  13. Hayden MS, Ghosh S (2012). NF-kappaB, the first quarter-century: remarkable progress and outstanding questions. Genes Dev 26: 203-234. DOI: 10.1101/gad.183434.111. Go to original source... Go to PubMed...
  14. Kadry MO, Abdel-Megeed RM, El-Meliegy E, Abdel-Hamid AZ (2018). Crosstalk between GSK-3, c-Fos, NF-kappaB and TNF-alpha signaling pathways play an ambitious role in Chitosan Nanoparticles Cancer Therapy. Toxicol Rep 5: 723-727. DOI: 10.1016/j.toxrep.2018.06.002. Go to original source... Go to PubMed...
  15. Koch PD, Miller HR, Yu G, Tallarico JA, Sorger PK, Wang Y, et al. (2018). A High Content Screen in Macrophages Identifies Small Molecule Modulators of STING-IRF3 and NF-κB Signaling. ACS Chem Biol 13: 1066-1081 DOI: 10.1021/acschembio.7b01060. Go to original source... Go to PubMed...
  16. Li H, Wu WK, Zheng Z, Che CT, Li ZJ, Xu DD et al. (2010). 3,3',4,5,5'-Pentahydroxy-trans-stilbene, a resveratrol derivative, induces apoptosis in colorectal carcinoma cells via oxidative stress. Eur J Pharmacol 637: 55-61 DOI: 10.1016/j.ejphar.2010.04.009. Go to original source... Go to PubMed...
  17. Li QS, Li Y, Deora GS, Ruan BF (2019). Resveratrol and Its Analogues: Recent Advances in Structural Modification and Bioactivity. Mini Rev Med Chem. 19(10): 809-825. DOI: 10.2174/1389557519666190128093840. Go to original source... Go to PubMed...
  18. Licznerska B, Szaefer H, Wierzchowski M, Sobierajska H, Baer-Dubowska W (2017). Resveratrol and its methoxy derivatives modulate the expression of estrogen metabolism enzymes in breast epithelial cells by AhR down-regulation. Mol Cell Biochem 425: 169-179. DOI: 10.1007/s11010-016-2871-2. Go to original source... Go to PubMed...
  19. Lipinski CA (2004). Lead- and drug-like compounds: the rule-of-five revolution. Drug Discov Today Technol 1: 337-341. DOI: 10.1016/j.ddtec.2004.11.007. Go to original source... Go to PubMed...
  20. Mabkhot YN, Alatibi F, El-Sayed NN, Al-Showiman S, Kheder NA, Wadood A, et al. (2016). Antimicrobial Activity of Some Novel Armed Thiophene Derivatives and Petra/Osiris/Molinspiration (POM) Analyses. Molecules 21(2). DOI: 10.3390/molecules21020222. Go to original source... Go to PubMed...
  21. Macindoe G, Mavridis L, Venkatraman V, Devignes MD, Ritchie DW (2010). HexServer: an FFT-based protein docking server powered by graphics processors. Nucleic Acids Res 38: W445-449. DOI: 10.1093/nar/gkq311. Go to original source... Go to PubMed...
  22. Marier JF, Vachon P, Gritsas A, Zhang J, Moreau JP, Ducharme MP (2002). Metabolism and disposition of resveratrol in rats: extent of absorption, glucuronidation, and enterohepatic recirculation evidenced by a linked-rat model. J Pharmacol Exp Ther 302: 369-373. DOI: 10.1124/jpet.102.033340. Go to original source... Go to PubMed...
  23. Martinez GP, Mijares MR, Chavez K, Suarez AI, Compagnone RS, Chirinos P, et al. (2019). Caracasine acid, an ent-3,4-seco-kaurene, promotes apoptosis and cell differentiation through NFkB signal pathway inhibition in leukemia cells. Eur J Pharmacol 862: 172624. DOI: 10.1016/j.ejphar.2019.172624. Go to original source... Go to PubMed...
  24. Morris GM, Huey R, Olson AJ (2008). Using AutoDock for ligand-receptor docking. Curr Protoc Bioinformatics Chapter 8: Unit 8. 14. DOI: 10.1002/0471250953.bi0814s24. Go to original source... Go to PubMed...
  25. Ogas T, Kondratyuk TP, Pezzuto JM (2013). Resveratrol analogs: promising chemopreventive agents. Ann N Y Acad Sci 1290: 21-29. DOI: 10.1111/nyas.12196. Go to original source... Go to PubMed...
  26. Pangeni R, Sahni JK, Ali J, Sharma S, Baboota S (2014). Resveratrol: review on therapeutic potential and recent advancesin drug delivery. Expert Opin Drug Deliv 11: 1285-1298. DOI: 10.1517/17425247.2014.919253. Go to original source... Go to PubMed...
  27. Piotrowska H, Myszkowski K, Ziolkowska A, Kulcenty K, Wierzchowski M, Kaczmarek M, et al. (2012). Resveratrol analogue 3,4,4',5-tetramethoxystilbene inhibits growth, arrests cell cycle and induces apoptosis in ovarian SKOV-3 and A-2780 cancer cells. Toxicol Appl Pharmacol 263: 53-60. DOI: 10.1016/j.taap.2012.05.023. Go to original source... Go to PubMed...
  28. Sander T, Freyss J, von Korff M, Reich JR, Rufener C (2009). OSIRIS, an entirely in-house developed drug discovery informatics system. J Chem Inf Model 49: 232-246. DOI: 10.1021/ci800305f. Go to original source... Go to PubMed...
  29. Sergides C, Chirila M, Silvestro L, Pitta D, Pittas A (2016). Bioavailability and safety study of resveratrol 500 mg tablets in healthy male and female volunteers. Exp Ther Med 11: 164-170. DOI: 10.3892/etm.2015.2895. Go to original source... Go to PubMed...
  30. Shaik NA, Awan ZA, Verma PK, Elango R, Banaganapalli B (2018). Protein phenotype diagnosis of autosomal dominant calmodulin mutations causing irregular heart rhythms. J Cell Biochem 119: 8233-8248. DOI: 10.1002/jcb.26834. Go to original source... Go to PubMed...
  31. Shanmuganathan S, Angayarkanni N (2018). Chebulagic acid Chebulinic acid and Gallic acid, the active principles of Triphala, inhibit TNFalpha induced pro-angiogenic and pro-inflammatory activities in retinal capillary endothelial cells by inhibiting p38, ERK and NF-κB phosphorylation. Vascul Pharmacol 108: 23-35. DOI: 10.1016/j.vph.2018.04.005. Go to original source... Go to PubMed...
  32. Stuurman FE, Nuijen B, Beijnen JH, Schellens JH (2013). Oral anticancer drugs: mechanisms of low bioavailability and strategies for improvement. Clin Pharmacokinet 52: 399-414. DOI: 10.1007/s40262-013-0040-2. Go to original source... Go to PubMed...
  33. Tian B, Liu J (2019). Resveratrol: A review of plant sources, synthesis, stability, modification and food application. J Sci Food Agric. DOI: 10.1002/jsfa.10152. Go to original source... Go to PubMed...
  34. Walle T, Hsieh F, DeLegge MH, Oatis JE, Jr., Walle UK (2004). High absorption but very low bioavailability of oral resveratrol in humans. Drug Metab Dispos 32: 1377-1382. DOI: 10.1124/dmd.104.000885. Go to original source... Go to PubMed...
  35. Yang C, Wang Y, Xie Y, Liu G, Lu Y, Wu W, et al. (2019). Oat protein-shellac nanoparticles as a delivery vehicle for resveratrol to improve bioavailability in vitro and in vivo. Nanomedicine (Lond). DOI: 10.2217/nnm-2019-0244. Go to original source... Go to PubMed...
  36. Zhang Y, Yang S, Yang Y, Liu T (2019). Resveratrol induces immunogenic cell death of human and murine ovarian carcinoma cells. Infect Agent Cancer 14: 27. DOI: 10.1186/s13027-019- 0247-4. Go to original source... Go to PubMed...
  37. Zhou L, Qi L, Jiang L, Zhou P, Ma J, Xu X, et al. (2014). Antitumor activity of gemcitabine can be potentiated in pancreatic cancer through modulation of TLR4/NF-kappaB signaling by 6-shogaol. AAPS J 16: 246-257. DOI: 10.1208/s12248-013-9558-3. Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.